RESUMEN
Chemically fueled supramolecular materials offer unique properties that include spatial and temporal control and even the ability to self-heal. Indeed, a few studies have demonstrated the ability to self-heal, however, the underlying mechanisms remain unclear. Here, we designed a peptide that forms a fibrillar network upon chemical fueling. We were surprised that the hydrogel could self-heal despite the lack of dynamics in the fiber assembly and disassembly. We explain this behavior by a mechanism that involves the chemically fueled peptide molecules that cannot self-assemble due to the lack of nucleation sites. When the fibers are perturbed, new nucleation sites form that help the assembly resulting in the healing of the damaged network. Furthermore, we generalized the behavior for other peptides. We refer to this non-assembling, chemically-fueled peptide as a molecular glue. In future work, we aim to explore whether this self-healing mechanism applies to more complex structures, narrowing the gap between biological and synthetic self-assemblies.
RESUMEN
The ability to store information in chemical reaction networks is essential for the complex behavior we associate with life. In biology, cellular memory is regulated through transcriptional states that are bistable, i.e., a state that can either be on or off and can be flipped from one to another through a transient signal. Such memory circuits have been realized synthetically through the rewiring of genetic systems in vivo or through the rational design of reaction networks based on DNA and highly evolved enzymes in vitro. Completely bottom-up analogs based on small molecules are rare and hard to design and thus represent a challenge for systems chemistry. In this work, we show that bistability can be designed from a simple non-equilibrium reaction cycle that is coupled to crystallization. The crystals exert the necessary feedback on the reaction cycle required for the bistability resulting in an on-state with assemblies and an off-state without. Each state represents volatile memory that can be stored in continuously stirred tank reactors indefinitely even though molecules are turned over on a minute-timescale. We showcase the system's abilities by creating a matrix display that can store images and by creating an OR-gate by coupling several switches together.
Asunto(s)
Transducción de SeñalRESUMEN
Methyl groups can have profound effects in drug discovery but the underlying mechanisms are diverse and incompletely understood. Here we report the stereospecific effect of a single, solvent-exposed methyl group in bicyclic [4.3.1] aza-amides, robustly leading to a 2 to 10-fold increase in binding affinity for FK506-binding proteins (FKBPs). This resulted in the most potent and efficient FKBP ligands known to date. By a combination of co-crystal structures, isothermal titration calorimetry (ITC), density-functional theory (DFT), and 3D reference interaction site model (3D-RISM) calculations we elucidated the origin of the observed affinity boost, which was purely entropically driven and relied on the displacement of a water molecule at the protein-ligand-bulk solvent interface. The best compounds potently occupied FKBPs in cells and enhanced bone morphogenic protein (BMP) signaling. Our results show how subtle manipulation of the solvent network can be used to design atom-efficient ligands for difficult, solvent-exposed binding pockets.
RESUMEN
Life is a dissipative nonequilibrium structure that requires constant consumption of energy to sustain itself. How such an unstable state could have selected from an abiotic pool of molecules remains a mystery. Here we show that liquid phase-separation offers a mechanism for the selection of dissipative products from a library of reacting molecules. We bring a set of primitive carboxylic acids out-of-equilibrium by addition of high-energy condensing agents. The resulting anhydrides are transiently present before deactivation via hydrolysis. We find the anhydrides that phase-separate into droplets to protect themselves from hydrolysis and to be more persistent than non-assembling ones. Thus, after several starvation-refueling cycles, the library self-selects the phase-separating anhydrides. We observe that the self-selection mechanism is more effective when the library is brought out-of-equilibrium by periodic addition of batches as opposed to feeding it continuously. Our results suggest that phase-separation offers a selection mechanism for energy dissipating assemblies.
RESUMEN
Dissipative self-assembly is a process in which energy-consuming chemical reaction networks drive the assembly of molecules. Prominent examples from biology include the GTP-fueled microtubule and ATP-driven actin assembly. Pattern formation and oscillatory behavior are some of the unique properties of the emerging assemblies. While artificial counterparts exist, researchers have not observed such complex responses. One reason for the missing complexity is the lack of feedback mechanisms of the assemblies on their chemical reaction network. In this work, we describe the dissipative self-assembly of colloids that protect the hydrolysis of their building blocks. The mechanism of inhibition is generalized and explored for other building blocks. We show that we can tune the level of inhibition by the assemblies. Finally, we show that the robustness of the assemblies towards starvation is affected by the degree of inhibition.
RESUMEN
FK506-binding proteins (FKBPs) are evolutionarily conserved proteins that display peptidyl-prolyl isomerase activities and act as coreceptors for immunosuppressants. Microbial macrophage-infectivity-potentiator (Mip)-type FKBPs can enhance infectivity. However, developing druglike ligands for FKBPs or Mips has proven difficult, and many FKBPs and Mips still lack biologically useful ligands. To explore the scope and potential of C5-substituted [4.3.1]-aza-bicyclic sulfonamides as a broadly applicable class of FKBP inhibitors, we developed a new synthesis method for the bicyclic core scaffold and used it to prepare an FKBP- and Mip-focused library. This allowed us to perform a systematic structure-activity-relationship analysis across key human FKBPs and microbial Mips, yielding highly improved inhibitors for all the FKBPs studied. A cocrystal structure confirmed the molecular-binding mode of the core structure and explained the affinity gained as a result of the preferred substituents. The best FKBP and Mip ligands showed promising antimalarial, antileginonellal, and antichlamydial properties in cellular models of infectivity, suggesting that substituted [4.3.1]-aza-bicyclic sulfonamides could be a novel class of anti-infectives.
Asunto(s)
Compuestos de Azabiciclo/farmacología , Sulfonamidas/farmacología , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/metabolismo , Candida albicans/efectos de los fármacos , Chlamydia trachomatis/efectos de los fármacos , Células HeLa , Humanos , Legionella pneumophila/efectos de los fármacos , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Unión Proteica , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonamidas/metabolismo , Proteínas de Unión a Tacrolimus/metabolismoRESUMEN
Many biological materials exist in non-equilibrium states driven by the irreversible consumption of high-energy molecules like ATP or GTP. These energy-dissipating structures are governed by kinetics and are thus endowed with unique properties including spatiotemporal control over their presence. Here we show man-made equivalents of materials driven by the consumption of high-energy molecules and explore their unique properties. A chemical reaction network converts dicarboxylates into metastable anhydrides driven by the irreversible consumption of carbodiimide fuels. The anhydrides hydrolyse rapidly to the original dicarboxylates and are designed to assemble into hydrophobic colloids, hydrogels or inks. The spatiotemporal control over the formation and degradation of materials allows for the development of colloids that release hydrophobic contents in a predictable fashion, temporary self-erasing inks and transient hydrogels. Moreover, we show that each material can be re-used for several cycles.