RESUMEN
Detecting genetic variants enables risk factor identification, disease screening, and initiation of preventative therapeutics. However, current methods, relying on hybridization or sequencing, are unsuitable for point-of-care settings. In contrast, CRISPR-based-diagnostics offer high sensitivity and specificity for point-of-care applications. While these methods have predominantly been used for pathogen sensing, their utilization for genotyping is limited. Here, we report a multiplexed CRISPR-based genotyping assay using LwaCas13a, PsmCas13b, and LbaCas12a, enabling the simultaneous detection of six genotypes. We applied this assay to identify genetic variants in the APOL1 gene prevalent among African Americans, which are associated with an 8-30-fold increase in the risk of developing kidney disease. Machine learning facilitated robust analysis across a multicenter clinical cohort of more than 100 patients, accurately identifying their genotypes. In addition, we optimized the readout using a multi-analyte lateral-flow assay demonstrating the ability for simplified genotype determination of clinical samples. Our CRISPR-based genotyping assay enables cost-effective point-of-care genetic variant detection due to its simplicity, versatility, and fast readout.
Asunto(s)
Apolipoproteína L1 , Sistemas de Atención de Punto , Apolipoproteína L1/genética , Humanos , Medición de Riesgo/métodos , Técnicas de Genotipaje/métodos , Sistemas CRISPR-Cas/genética , Genotipo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Negro o Afroamericano/genética , Predisposición Genética a la Enfermedad , Enfermedades Renales/genética , Enfermedades Renales/diagnósticoRESUMEN
Inverted formin-2 (INF2) gene mutations are among the most common causes of genetic focal segmental glomerulosclerosis (FSGS) with or without Charcot-Marie-Tooth (CMT) disease. Recent studies suggest that INF2, through its effects on actin and microtubule arrangement, can regulate processes including vesicle trafficking, cell adhesion, mitochondrial calcium uptake, mitochondrial fission, and T-cell polarization. Despite roles for INF2 in multiple cellular processes, neither the human pathogenic R218Q INF2 point mutation nor the INF2 knock-out allele is sufficient to cause disease in mice. This discrepancy challenges our efforts to explain the disease mechanism, as the link between INF2-related processes, podocyte structure, disease inheritance pattern, and their clinical presentation remains enigmatic. Here, we compared the kidney responses to puromycin aminonucleoside (PAN) induced injury between R218Q INF2 point mutant knock-in and INF2 knock-out mouse models and show that R218Q INF2 mice are susceptible to developing proteinuria and FSGS. This contrasts with INF2 knock-out mice, which show only a minimal kidney phenotype. Co-localization and co-immunoprecipitation analysis of wild-type and mutant INF2 coupled with measurements of cellular actin content revealed that the R218Q INF2 point mutation confers a gain-of-function effect by altering the actin cytoskeleton, facilitated in part by alterations in INF2 localization. Differential analysis of RNA expression in PAN-stressed heterozygous R218Q INF2 point-mutant and heterozygous INF2 knock-out mouse glomeruli showed that the adhesion and mitochondria-related pathways were significantly enriched in the disease condition. Mouse podocytes with R218Q INF2, and an INF2-mutant human patient's kidney organoid-derived podocytes with an S186P INF2 mutation, recapitulate the defective adhesion and mitochondria phenotypes. These results link INF2-regulated cellular processes to the onset and progression of glomerular disease. Thus, our data demonstrate that gain-of-function mechanisms drive INF2-related FSGS and explain the autosomal dominant inheritance pattern of this disease.
RESUMEN
Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.
Asunto(s)
Enfermedades Renales , Podocitos , Ratones , Animales , Humanos , Podocitos/metabolismo , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Células HEK293 , Enfermedades Renales/metabolismo , Ratones Transgénicos , Canales Iónicos/metabolismoRESUMEN
Introduction: Advances in the field of genetic testing have spurred its use in transplantation. Potential benefits of genetic testing in transplant nephrology include diagnosis, treatment, risk stratification of recurrent disease, and risk stratification in potential donors. However, it is unclear how to best apply genetic testing in this population to maximize its yield. We describe our transplant center's approach to selective genetic testing as part of kidney transplant candidate and donor evaluation. Methods: Transplant recipient candidates were tested if they had a history of ESRD at age <50, primary FSGS, complement-mediated or unknown etiology of kidney disease, or had a family history of kidney disease. Donors were tested if age <35, were related to their potential recipients with known genetic susceptibility or had a first-degree relative with a history of kidney disease of unknown etiology. A targeted NGS gene panel of 385 genes was used. Clinical implications and downstream effects were monitored. Results: Over 30% of recipients tested within the established criteria were positive for a pathogenic variant. The most common pathogenic variants were APOL1 high-risk genotypes as well as collagen 4-alpha-3, -4 and -5. Donor testing done according to our inclusion criteria resulted in about 12% yield. Positive test results in recipients helped with stratification of the risk of recurrent disease. Positive test results in potential donors guided informed decisions on when not to move forward with a donation. Discussion: Integrating targeted panel genetic testing into a kidney transplant clinic in conjunction with a selective criteria for testing donors and recipients ensured a reasonable diagnostic yield. The results had implications on clinical management, risk stratification and in some cases were instrumental in directing downstream changes including when to stop the evaluation process. Given the impact on management and transplant decisions, we advocate for the widespread use of genetic testing in selected individuals undergoing transplant evaluation and donation who meet pre-defined criteria.
RESUMEN
APOL1 risk variants are associated with increased risk of kidney disease in patients of African ancestry, but not all individuals with the APOL1 high-risk genotype develop kidney disease. As APOL1 gene expression correlates closely with the degree of kidney cell injury in both cell and animal models, the mechanisms regulating APOL1 expression may be critical determinants of risk allele penetrance. The APOL1 messenger RNA includes Alu elements at the 3' untranslated region that can form a double-stranded RNA structure (Alu-dsRNA) susceptible to posttranscriptional adenosine deaminase acting on RNA (ADAR)-mediated adenosine-to-inosine (A-to-I) editing, potentially impacting gene expression. We studied the effects of ADAR expression and A-to-I editing on APOL1 levels in podocytes, human kidney tissue, and a transgenic APOL1 mouse model. In interferon-γ (IFN-γ)-stimulated human podocytes, ADAR down-regulates APOL1 by preventing melanoma differentiation-associated protein 5 (MDA5) recognition of dsRNA and the subsequent type I interferon (IFN-I) response. Knockdown experiments showed that recognition of APOL1 messenger RNA itself is an important contributor to the MDA5-driven IFN-I response. Mathematical modeling suggests that the IFN-ADAR-APOL1 network functions as an incoherent feed-forward loop, a biological circuit capable of generating fast, transient responses to stimuli. Glomeruli from human kidney biopsies exhibited widespread editing of APOL1 Alu-dsRNA, while the transgenic mouse model closely replicated the edited sites in humans. APOL1 expression in mice was inversely correlated with Adar1 expression under IFN-γ stimuli, supporting the idea that ADAR regulates APOL1 levels in vivo. ADAR-mediated A-to-I editing is an important regulator of APOL1 expression that could impact both penetrance and severity of APOL1-associated kidney disease.
Asunto(s)
Adenosina Desaminasa , Interferón Tipo I , Humanos , Animales , Ratones , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Edición de ARN , Helicasa Inducida por Interferón IFIH1/metabolismo , ARN Bicatenario/genética , Regiones no Traducidas 3' , Apolipoproteína L1/genética , Interferón gamma/genética , Interferón gamma/metabolismo , ARN Mensajero/metabolismo , Inosina/genética , Inosina/metabolismo , Adenosina/metabolismo , Interferón Tipo I/metabolismoRESUMEN
BACKGROUND: Two variants in the gene encoding apolipoprotein L1 (APOL1) that are highly associated with African ancestry are major contributors to the large racial disparity in rates of human kidney disease. We previously demonstrated that recruitment of APOL1 risk variants G1 and G2 from the endoplasmic reticulum to lipid droplets leads to reduced APOL1-mediated cytotoxicity in human podocytes. METHODS: We used CRISPR-Cas9 gene editing of induced pluripotent stem cells to develop human-derived APOL1G0/G0 and APOL1G2/G2 kidney organoids on an isogenic background, and performed bulk RNA sequencing of organoids before and after treatment with IFN-γ. We examined the number and distribution of lipid droplets in response to treatment with inhibitors of diacylglycerol O-acyltransferases 1 and 2 (DGAT1 and DGAT2) in kidney cells and organoids. RESULTS: APOL1 was highly upregulated in response to IFN-γ in human kidney organoids, with greater increases in organoids of high-risk G1 and G2 genotypes compared with wild-type (G0) organoids. RNA sequencing of organoids revealed that high-risk APOL1G2/G2 organoids exhibited downregulation of a number of genes involved in lipogenesis and lipid droplet biogenesis, as well as upregulation of genes involved in fatty acid oxidation. There were fewer lipid droplets in unstimulated high-risk APOL1G2/G2 kidney organoids than in wild-type APOL1G0/G0 organoids. Whereas DGAT1 inhibition reduced kidney organoid lipid droplet number, DGAT2 inhibition unexpectedly increased organoid lipid droplet number. DGAT2 inhibition promoted the recruitment of APOL1 to lipid droplets, with associated reduction in cytotoxicity. CONCLUSIONS: Lipogenesis and lipid droplet formation are important modulators of APOL1-associated cytotoxicity. Inhibition of DGAT2 may offer a potential therapeutic strategy to attenuate cytotoxic effects of APOL1 risk variants.
Asunto(s)
Enfermedades Renales , Podocitos , Apolipoproteína L1/genética , Diacilglicerol O-Acetiltransferasa/genética , Femenino , Humanos , Riñón , Enfermedades Renales/genética , Gotas Lipídicas , MasculinoRESUMEN
[This corrects the article DOI: 10.3389/fimmu.2021.624821.].
RESUMEN
Kidney disease affects 10% of the world population and is associated with increased mortality. Steroid-resistant nephrotic syndrome (SRNS) is a leading cause of end-stage kidney disease in children, often failing standard immunosuppression. Here, we report the results of a prospective study to investigate the immunological impact and safety of a gluten-free and dairy-free (GF/DF) diet in children with SRNS. The study was organized as a four-week summer camp implementing a strict GF/DF diet with prospective collection of blood, urine and stool in addition to whole exome sequencing WES of DNA of participants. Using flow cytometry, proteomic assays and microbiome metagenomics, we show that GF/DF diet had a major anti-inflammatory effect in all participants both at the protein and cellular level with 4-fold increase in T regulatory/T helper 17 cells ratio and the promotion of a favorable regulatory gut microbiota. Overall, GF/DF can have a significant anti-inflammatory effect in children with SRNS and further trials are warranted to investigate this potential dietary intervention in children with SRNS.