Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Front Pharmacol ; 14: 1276340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035014

RESUMEN

Introduction: Monoclonal antibodies (mAbs) targeting immunoglobulin E (IgE) [omalizumab], type 2 (T2) cytokine interleukin (IL) 5 [mepolizumab, reslizumab], IL-4 Receptor (R) α [dupilumab], and IL-5R [benralizumab]), improve quality of life in patients with T2-driven inflammatory diseases. However, there is a concern for an increased risk of helminth infections. The aim was to explore safety signals of parasitic infections for omalizumab, mepolizumab, reslizumab, dupilumab, and benralizumab. Methods: Spontaneous reports were used from the Food and Drug Administration's Adverse Event Reporting System (FAERS) database from 2004 to 2021. Parasitic infections were defined as any type of parasitic infection term obtained from the Standardised Medical Dictionary for Regulatory Activities® (MedDRA®). Safety signal strength was assessed by the Reporting Odds Ratio (ROR). Results: 15,502,908 reports were eligible for analysis. Amongst 175,888 reports for omalizumab, mepolizumab, reslizumab, dupilumab, and benralizumab, there were 79 reports on parasitic infections. Median age was 55 years (interquartile range 24-63 years) and 59.5% were female. Indications were known in 26 (32.9%) reports; 14 (53.8%) biologicals were reportedly prescribed for asthma, 8 (30.7%) for various types of dermatitis, and 2 (7.6%) for urticaria. A safety signal was observed for each biological, except for reslizumab (due to lack of power), with the strongest signal attributed to benralizumab (ROR = 15.7, 95% Confidence Interval: 8.4-29.3). Conclusion: Parasitic infections were disproportionately reported for mAbs targeting IgE, T2 cytokines, or T2 cytokine receptors. While the number of adverse event reports on parasitic infections in the database was relatively low, resulting safety signals were disproportionate and warrant further investigation.

3.
Biomater Res ; 27(1): 104, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853495

RESUMEN

BACKGROUND: Long-term drug evaluation heavily relies upon rodent models. Drug discovery methods to reduce animal models in oncology may include three-dimensional (3D) cellular systems that take into account tumor microenvironment (TME) cell types and biomechanical properties. METHODS: In this study we reconstructed a 3D tumor using an elastic polymer (acrylate-endcapped urethane-based poly(ethylene glycol) (AUPPEG)) with clinical relevant stiffness. Single cell suspensions from low-grade serous ovarian cancer (LGSOC) patient-derived early passage cultures of cancer cells and cancer-associated fibroblasts (CAF) embedded in a collagen gel were introduced to the AUPPEG scaffold. After self-organization in to a 3D tumor, this model was evaluated by a long-term (> 40 days) exposure to a drug combination of MEK and HSP90 inhibitors. The drug-response results from this long-term in vitro model are compared with drug responses in an orthotopic LGSOC xenograft mouse model. RESULTS: The in vitro 3D scaffold LGSOC model mimics the growth ratio and spatial organization of the LGSOC. The AUPPEG scaffold approach allows to test new targeted treatments and monitor long-term drug responses. The results correlate with those of the orthotopic LGSOC xenograft mouse model. CONCLUSIONS: The mechanically-tunable scaffolds colonized by a three-dimensional LGSOC allow long-term drug evaluation and can be considered as a valid alternative to reduce, replace and refine animal models in drug discovery.

4.
Am J Respir Crit Care Med ; 208(2): 211-212, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279365
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA