Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Neural Circuits ; 18: 1389110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601266

RESUMEN

The error-related negativity and an N2-component recorded over medial frontal cortex index core functions of cognitive control. While they are known to originate from agranular frontal areas, the underlying microcircuit mechanisms remain elusive. Most insights about microcircuit function have been derived from variations of the so-called canonical microcircuit model. These microcircuit architectures are based extensively on studies from granular sensory cortical areas in monkeys, cats, and rodents. However, evidence has shown striking cytoarchitectonic differences across species and differences in the functional relationships across cortical layers in agranular compared to granular sensory areas. In this minireview, we outline a tentative microcircuit model underlying cognitive control in the agranular frontal cortex of primates. The model incorporates the main GABAergic interneuron subclasses with specific laminar arrangements and target regions on pyramidal cells. We emphasize the role of layer 5 pyramidal cells in error and conflict detection. We offer several specific questions necessary for creating a specific intrinsic microcircuit model of the agranular frontal cortex.


Asunto(s)
Lóbulo Frontal , Macaca , Animales , Lóbulo Frontal/fisiología , Células Piramidales , Interneuronas , Haplorrinos , Primates , Cognición , Corteza Cerebral
2.
Cereb Cortex ; 33(23): 11300-11319, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37804250

RESUMEN

A multi-scale approach elucidated the origin of the error-related-negativity (ERN), with its associated theta-rhythm, and the post-error-positivity (Pe) in macaque supplementary eye field (SEF). Using biophysical modeling, synaptic inputs to a subpopulation of layer-3 (L3) and layer-5 (L5) pyramidal cells (PCs) were optimized to reproduce error-related spiking modulation and inter-spike intervals. The intrinsic dynamics of dendrites in L5 but not L3 error PCs generate theta rhythmicity with random phases. Saccades synchronized the phases of the theta-rhythm, which was magnified on errors. Contributions from error PCs to the laminar current source density (CSD) observed in SEF were negligible and could not explain the observed association between error-related spiking modulation in L3 PCs and scalp-EEG. CSD from recorded laminar field potentials in SEF was comprised of multipolar components, with monopoles indicating strong electro-diffusion, dendritic/axonal electrotonic current leakage outside SEF, or violations of the model assumptions. Our results also demonstrate the involvement of secondary cortical regions, in addition to SEF, particularly for the later Pe component. The dipolar component from the observed CSD paralleled the ERN dynamics, while the quadrupolar component paralleled the Pe. These results provide the most advanced explanation to date of the cellular mechanisms generating the ERN.


Asunto(s)
Electroencefalografía , Ritmo Teta , Animales , Células Piramidales , Lóbulo Frontal , Axones , Macaca , Potenciales Evocados
3.
Neuroimage ; 263: 119593, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36031184

RESUMEN

Event-related potentials (ERP) are among the most widely measured indices for studying human cognition. While their timing and magnitude provide valuable insights, their usefulness is limited by our understanding of their neural generators at the circuit level. Inverse source localization offers insights into such generators, but their solutions are not unique. To address this problem, scientists have assumed the source space generating such signals comprises a set of discrete equivalent current dipoles, representing the activity of small cortical regions. Based on this notion, theoretical studies have employed forward modeling of scalp potentials to understand how changes in circuit-level dynamics translate into macroscopic ERPs. However, experimental validation is lacking because it requires in vivo measurements of intracranial brain sources. Laminar local field potentials (LFP) offer a mechanism for estimating intracranial current sources. Yet, a theoretical link between LFPs and intracranial brain sources is missing. Here, we present a forward modeling approach for estimating mesoscopic intracranial brain sources from LFPs and predict their contribution to macroscopic ERPs. We evaluate the accuracy of this LFP-based representation of brain sources utilizing synthetic laminar neurophysiological measurements and then demonstrate the power of the approach in vivo to clarify the source of a representative cognitive ERP component. To that end, LFP was measured across the cortical layers of visual area V4 in macaque monkeys performing an attention demanding task. We show that area V4 generates dipoles through layer-specific transsynaptic currents that biophysically recapitulate the ERP component through the detailed forward modeling. The constraints imposed on EEG production by this method also revealed an important dissociation between computational and biophysical contributors. As such, this approach represents an important bridge between laminar microcircuitry, through the mesoscopic activity of cortical columns to the patterns of EEG we measure at the scalp.


Asunto(s)
Encéfalo , Potenciales Evocados , Animales , Humanos , Potenciales Evocados/fisiología , Encéfalo/fisiología , Macaca , Mapeo Encefálico , Electroencefalografía/métodos
5.
Front Neurol ; 12: 659081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690906

RESUMEN

Alongside positive blood oxygenation level-dependent (BOLD) responses associated with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are typically found in epileptic patients. Previous studies suggest that, in general, up to four mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these mechanisms from BOLD signals are pivotal for the improvement of the specificity of the electroencephalography-functional magnetic resonance imaging (EEG-fMRI) image modality to identify the seizure-onset zones in refractory local epilepsy. This requires models with physiological interpretation that furnish the understanding of how these mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel model with viscoelastic compliance/inductance in combination with dynamic models of both neuronal population activity and tissue/blood O2 to classify the hemodynamic response functions (HRFs) linked to the above mechanisms in the irritative zones of epileptic patients. First, we evaluated the most relevant imprints on the BOLD response caused by variations of key model parameters. Second, we demonstrated that a general linear model is enough to accurately represent the four different types of NBRs. Third, we tested the ability of a machine learning classifier, built from a simulated ensemble of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones. Cross-validation indicates that these four mechanisms can be classified from realistic fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the presence of some of these mechanisms. We concluded that a proper identification and interpretation of NBR mechanisms in epilepsy can be performed by combining general linear models and biophysically inspired models.

6.
J Theor Biol ; 529: 110856, 2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34363836

RESUMEN

Blood Oxygen Level Dependent (BOLD) signal indirectly characterizes neuronal activity by measuring hemodynamic and metabolic changes in the nearby microvasculature. A deeper understanding of how localized changes in electrical, metabolic and hemodynamic factors translate into a BOLD signal is crucial for the interpretation of functional brain imaging techniques. While positive BOLD responses (PBR) are widely considered to be linked with neuronal activation, the origins of negative BOLD responses (NBR) have remained largely unknown. As NBRs are sometimes observed in close proximity of regions with PBR, a blood "stealing" effect, i.e., redirection of blood from a passive periphery to the area with high neuronal activity, has been postulated. In this study, we used the Hagen-Poiseuille equation to model hemodynamics in an idealized microvascular network that account for the particulate nature of blood and nonlinearities arising from the red blood cell (RBC) distribution (i.e., the Fåhraeus, Fåhraeus-Lindqvist and the phase separation effects). Using this detailed model, we evaluate determinants driving this "stealing" effect in a microvascular network with geometric parameters within physiological ranges. Model simulations predict that during localized cerebral blood flow (CBF) increases due to neuronal activation-hyperemic response, blood from surrounding vessels is reallocated towards the activated region. This stealing effect depended on the resistance of the microvasculature and the uneven distribution of RBCs at vessel bifurcations. A parsimonious model consisting of two-connected windkessel regions sharing a supplying artery was proposed to simulate the stealing effect with a minimum number of parameters. Comparison with the detailed model showed that the parsimonious model can reproduce the observed response for hematocrit values within the physiological range for different species. Our novel parsimonious model promise to be of use for statistical inference (top-down analysis) from direct blood flow measurements (e.g., arterial spin labeling and laser Doppler/Speckle flowmetry), and when combined with theoretical models for oxygen extraction/diffusion will help account for some types of NBRs.


Asunto(s)
Imagen por Resonancia Magnética , Robo , Encéfalo , Circulación Cerebrovascular , Hematócrito , Hemodinámica , Oxígeno
7.
PLoS Comput Biol ; 17(2): e1008648, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33566841

RESUMEN

Optogenetic targeting of astrocytes provides a robust experimental model to differentially induce Ca2+ signals in astrocytes in vivo. However, a systematic study quantifying the response of optogenetically modified astrocytes to light is yet to be performed. Here, we propose a novel stochastic model of Ca2+ dynamics in astrocytes that incorporates a light sensitive component-channelrhodopsin 2 (ChR2). Utilizing this model, we investigated the effect of different light stimulation paradigms on cells expressing select variants of ChR2 (wild type, ChETA, and ChRET/TC). Results predict that depending on paradigm specification, astrocytes might undergo drastic changes in their basal Ca2+ level and spiking probability. Furthermore, we performed a global sensitivity analysis to assess the effect of variation in parameters pertinent to the shape of the ChR2 photocurrent on astrocytic Ca2+ dynamics. Results suggest that directing variants towards the first open state of the ChR2 photocycle (o1) enhances spiking activity in astrocytes during optical stimulation. Evaluation of the effect of Ca2+ buffering and coupling coefficient in a network of ChR2-expressing astrocytes demonstrated basal level elevations in the stimulated region and propagation of calcium activity to unstimulated cells. Buffering reduced the diffusion range of Ca2+ within the network, thereby limiting propagation and influencing the activity of astrocytes. Collectively, the framework presented in this study provides valuable information for the selection of light stimulation paradigms that elicit desired astrocytic activity using existing ChR2 constructs, as well as aids in the engineering of future application-oriented optogenetic variants.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Regulación de la Expresión Génica , Algoritmos , Animales , Astrocitos/citología , Tampones (Química) , Calcio/química , Biología Computacional , Simulación por Computador , Cinética , Luz , Neuronas/citología , Optogenética , Fotoquímica , Probabilidad , Procesos Estocásticos
8.
J Neurosci ; 40(44): 8513-8529, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33037076

RESUMEN

Ca2+ spikes initiated in the distal trunk of layer 5 pyramidal cells (PCs) underlie nonlinear dynamic changes in the gain of cellular response, critical for top-down control of cortical processing. Detailed models with many compartments and dozens of ionic channels can account for this Ca2+ spike-dependent gain and associated critical frequency. However, current models do not account for all known Ca2+-dependent features. Previous attempts to include more features have required increasing complexity, limiting their interpretability and utility for studying large population dynamics. We overcome these limitations in a minimal two-compartment biophysical model. In our model, a basal-dendrites/somatic compartment included fast-inactivating Na+ and delayed-rectifier K+ conductances, while an apical-dendrites/trunk compartment included persistent Na+, hyperpolarization-activated cation (I h ), slow-inactivating K+, muscarinic K+, and Ca2+ L-type. The model replicated the Ca2+ spike morphology and its critical frequency plus three other defining features of layer 5 PC synaptic integration: linear frequency-current relationships, back-propagation-activated Ca2+ spike firing, and a shift in the critical frequency by blocking I h Simulating 1000 synchronized layer 5 PCs, we reproduced the current source density patterns evoked by Ca2+ spikes and describe resulting medial-frontal EEG on a male macaque monkey. We reproduced changes in the current source density when I h was blocked. Thus, a two-compartment model with five crucial ionic currents in the apical dendrites reproduces all features of these neurons. We discuss the utility of this minimal model to study the microcircuitry of agranular areas of the frontal lobe involved in cognitive control and responsible for event-related potentials, such as the error-related negativity.SIGNIFICANCE STATEMENT A minimal model of layer 5 pyramidal cells replicates all known features crucial for distal synaptic integration in these neurons. By redistributing voltage-gated and returning transmembrane currents in the model, we establish a theoretical framework for the investigation of cortical microcircuit contribution to intracranial local field potentials and EEG. This tractable model will enable biophysical evaluation of multiscale electrophysiological signatures and computational investigation of cortical processing.


Asunto(s)
Biofisica , Modelos Neurológicos , Neocórtex/fisiología , Red Nerviosa/fisiología , Células Piramidales/fisiología , Algoritmos , Animales , Canales de Calcio Tipo L/fisiología , Señalización del Calcio/fisiología , Simulación por Computador , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Dendritas/fisiología , Electroencefalografía , Potenciales Evocados/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Macaca radiata , Masculino , Neocórtex/citología , Red Nerviosa/citología , Canales de Sodio/fisiología
9.
ACS Sens ; 4(12): 3175-3185, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31670508

RESUMEN

Wireless implantable neural interfaces can record high-resolution neuropotentials without constraining patient movement. Existing wireless systems often require intracranial wires to connect implanted electrodes to an external head stage or/and deploy an application-specific integrated circuit (ASIC), which is battery-powered or externally power-transferred, raising safety concerns such as infection, electronics failure, or heat-induced tissue damage. This work presents a biocompatible, flexible, implantable neural recorder capable of wireless acquisition of neuropotentials without wires, batteries, energy harvesting units, or active electronics. The recorder, fabricated on a thin polyimide substrate, features a small footprint of 9 mm × 8 mm × 0.3 mm and is composed of passive electronic components. The absence of active electronics on the device leads to near zero power consumption, inherently avoiding the catastrophic failure of active electronics. We performed both in vitro validation in a tissue-simulating phantom and in vivo validation in an epileptic rat. The fully passive wireless recorder was implanted under rat scalp to measure neuropotentials from its contact electrodes. The implanted wireless recorder demonstrated its capability to capture low voltage neuropotentials, including somatosensory evoked potentials (SSEPs), and interictal epileptiform discharges (IEDs). Wirelessly recorded SSEP and IED signals were directly compared to those from wired electrodes to demonstrate the efficacy of the wireless data. In addition, a convoluted neural network-based machine learning algorithm successfully achieved IED signal recognition accuracy as high as 100 and 91% in wired and wireless IED data, respectively. These results strongly support the fully passive wireless neural recorder's capability to measure neuropotentials as low as tens of microvolts. With further improvement, the recorder system presented in this work may find wide applications in future brain machine interface systems.


Asunto(s)
Electroencefalografía/métodos , Potenciales Evocados Somatosensoriales , Algoritmos , Animales , Materiales Biocompatibles/química , Encéfalo/metabolismo , Electrodos Implantados , Electroencefalografía/instrumentación , Aprendizaje Automático , Ratas Wistar , Tecnología Inalámbrica/instrumentación
10.
Mater Sci Eng C Mater Biol Appl ; 100: 485-492, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30948085

RESUMEN

α-Fe2O3 Magnetic nanoparticles (MNPs) have been synthesized, functionalized at silica that ends up with -NH2 group to form FMNPs. Conjugation of FMNPs with a fluorescently-labeled poly-caspase inhibitor valylalanylaspartic acid fluoromethyl ketone (SR-FLICA) which serves as a pan-caspase inhibitor was carried out to form finally a hybrid probe SR-FLICA-FMNPs. This probe could be used as a multimodal magneto-fluorescent platform for live apoptotic cells monitoring using MR and fluorescence imaging techniques. Characterization results of the as-synthesized MNPs and functionalized FMNPs by SEM, TEM, N2 isotherm, XRD and magnetic VSM showed that, a controlled morphological structure of MNPs could be synthesized with cubic-shaped, ferromagnetic, base-centered orthorhombic space group R3c and average size of 45.8 ±â€¯3.2 and 50.3 ±â€¯1.6 nm for MNPs and FMNPs, respectively. Phantom MRI experimental results of the examined MNPs and FMNPs confirmed the concentration dependency nature of T2 signal reduction. In addition, in vitro and in vivo sensing studies on our conjugated hybrid multifunctional probe SR-FLICA-FMNPs using 9 L gliosarcoma cells confirmed that; it could positively intact within the astrocytes and the nuclei of the apoptotic cells taking into account the starting material's cytotoxicity. Several histo-chemical protocols could be examined to confirm such behavior. Confocal and fluorescence microscopes' results of the histological stained apoptotic cells confirmed positive and specific expressions of our designed probe. MRI monitoring results of apoptotic rat models after focal brain transient cerebral ischemia showed a remarkable time-dependent reduction of T2* weighted signal up to 4 h indicating that our newly designed hybrid probe has long blood circulation and could be used as a future contrasting agent. Moreover, the distribution of our probe was evaluated by subtracting the T2* signal images before and after injection with SR-FLICA-FMNPs and was significantly correlated with the histological findings by staining via terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling. Moreover, clearance study confirmed that; our magneto-fluorescent hybrid probe could be cleared through liver Kupffer cells. Thus; the newly developed SR-FLICA-FMNPs could be considered as a future multifunctional probe for in vitro and in vivo apoptotic cells monitoring.


Asunto(s)
Apoptosis , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/patología , Colorantes Fluorescentes/química , Nanopartículas de Magnetita/química , Animales , Línea Celular Tumoral , Supervivencia Celular , Rastreo Celular , Eritrocitos/metabolismo , Hemólisis , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/ultraestructura , Ratas Sprague-Dawley , Relación Señal-Ruido , Propiedades de Superficie , Factores de Tiempo
12.
Brain Topogr ; 32(4): 599-624, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-27026168

RESUMEN

The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.


Asunto(s)
Mapeo Encefálico/métodos , Electroencefalografía/métodos , Animales , Encéfalo/fisiología , Encefalopatías , Electrodos , Humanos , Imagen por Resonancia Magnética , Masculino , Ratas , Cuero Cabelludo
14.
J Neurosci Methods ; 307: 106-124, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997062

RESUMEN

BACKGROUND: Recent years have witnessed an upsurge in the development of methods for estimating current source densities (CSDs) in the neocortical tissue from their recorded local field potential (LFP) reflections using microelectrode arrays. Among these, methods utilizing linear arrays work under the assumption that CSDs vary as a function of cortical depth; whereas they are constant in the tangential direction, infinitely or in a confined cylinder. This assumption is violated in the analysis of neuronal activity propagating along the neocortical sheet, e.g. propagation of alpha waves or cortical spreading depression. NEW METHOD: Here, we developed a novel mathematical method (waveCSD) for CSD analysis of LFPs associated with a planar wave of neocortical neuronal activity propagating at a constant velocity towards a linear probe. RESULTS: Results show that the algorithm is robust to the presence of noise in LFP data and uncertainties in knowledge of propagation velocity. Also, results show high level of accuracy of the method in a wide range of electrode resolutions. Using in vivo experimental recordings from the rat neocortex, we employed waveCSD to characterize transmembrane currents associated with cortical spreading depressions. COMPARISON WITH EXISTING METHOD(S): Simulation results indicate that waveCSD has a significantly higher reconstruction accuracy compared to the widely-used inverse CSD method (iCSD), and the regularized kernel CSD method (kCSD), in the analysis of CSDs originating from propagating neuronal activity. CONCLUSIONS: The waveCSD method provides a theoretical platform for estimation of transmembrane currents from their LFPs in experimental paradigms involving wave propagation.


Asunto(s)
Depresión de Propagación Cortical/fisiología , Potenciales de la Membrana/fisiología , Neocórtex/citología , Neocórtex/fisiología , Neuronas/fisiología , Animales , Simulación por Computador , Modelos Biológicos , Ratas
15.
Front Cell Neurosci ; 12: 52, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867355

RESUMEN

Current clinical practice in focal epilepsy involves brain source imaging (BSI) to localize brain areas where from interictal epileptiform discharges (IEDs) emerge. These areas, named irritative zones, have been useful to define candidate seizures-onset zones during pre-surgical workup. Since human histological data are mostly available from final resected zones, systematic studies characterizing pathophysiological mechanisms and abnormal molecular/cellular substrates in irritative zones-independent of them being epileptogenic-are challenging. Combining BSI and histological analysis from all types of irritative zones is only possible through the use of preclinical animal models. Here, we recorded 32-channel spontaneous electroencephalographic data from rats that have focal cortical dysplasia (FCD) and chronic seizures. BSI for different IED subtypes was performed using the methodology presented in Bae et al. (2015). Post-mortem brain sections containing irritative zones were stained to quantify anatomical, functional, and inflammatory biomarkers specific for epileptogenesis, and the results were compared with those obtained using the contralateral healthy brain tissue. We found abnormal anatomical structures in all irritative zones (i.e., larger neuronal processes, glioreactivity, and vascular cuffing) and larger expressions for neurotransmission (i.e., NR2B) and inflammation (i.e., ILß1, TNFα and HMGB1). We conclude that irritative zones in this rat preclinical model of FCD comprise abnormal tissues disregarding whether they are actually involved in icto-genesis or not. We hypothesize that seizure perpetuation happens gradually; hence, our results could support the use of IED-based BSI for the early diagnosis and preventive treatment of potential epileptic foci. Further verifications in humans are yet needed.

16.
Biomed Opt Express ; 8(1): 78-103, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28101403

RESUMEN

Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (RTD(λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to RTD(λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of µs'(λ)/µa(λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.

17.
Neuroimage ; 146: 575-588, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27646129

RESUMEN

It is generally recognised that event related potentials (ERPs) of electroencephalogram (EEG) primarily reflect summed post-synaptic activity of the local pyramidal neural population(s). However, it is still not understood how the positive and negative deflections (e.g. P1, N1 etc) observed in ERP recordings are related to the underlying excitatory and inhibitory post-synaptic activity. We investigated the neurogenesis of P1 and N1 in ERPs by pharmacologically manipulating inhibitory post-synaptic activity in the somatosensory cortex of rodent, and concurrently recording EEG and local field potentials (LFPs). We found that the P1 wave in the ERP and LFP of the supragranular layers is determined solely by the excitatory post-synaptic activity of the local pyramidal neural population, as is the initial segment of the N1 wave across cortical depth. The later part of the N1 wave was modulated by inhibitory post-synaptic activity, with its peak and the pulse width increasing as inhibition was reduced. These findings suggest that the temporal delay of inhibition with respect to excitation observed in intracellular recordings is also reflected in extracellular field potentials (FPs), resulting in a temporal window during which only excitatory post-synaptic activity and leak channel activity are recorded in the ERP and evoked LFP time series. Based on these findings, we provide clarification on the interpretation of P1 and N1 in terms of the excitatory and inhibitory post-synaptic activities of the local pyramidal neural population(s).


Asunto(s)
Ondas Encefálicas , Potenciales Evocados Somatosensoriales , Corteza Somatosensorial/fisiología , Animales , Electroencefalografía , Femenino , Inhibición Neural , Estimulación Física , Ratas , Percepción del Tacto/fisiología
18.
Neuroimage Clin ; 11: 423-434, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27104137

RESUMEN

Complete removal of epileptogenic cortex while preserving eloquent areas is crucial in patients undergoing epilepsy surgery. In this manuscript, the feasibility was explored of developing a new methodology based on dynamic intrinsic optical signal imaging (DIOSI) to intraoperatively detect and differentiate epileptogenic from eloquent cortices in pediatric patients with focal epilepsy. From 11 pediatric patients undergoing epilepsy surgery, negatively-correlated hemodynamic low-frequency oscillations (LFOs, ~ 0.02-0.1 Hz) were observed from the exposed epileptogenic and eloquent cortical areas, as defined by electrocorticography (ECoG), using a DIOSI system. These LFOs were classified into multiple groups in accordance with their unique temporal profiles. Causal relationships within these groups were investigated using the Granger causality method, and 83% of the ECoG-defined epileptogenic cortical areas were found to have a directed influence on one or more cortical areas showing LFOs within the field of view of the imaging system. To understand the physiological origins of LFOs, blood vessel density was compared between epileptogenic and normal cortical areas and a statistically-significant difference (p < 0.05) was detected. The differences in blood-volume and blood-oxygenation dynamics between eloquent and epileptogenic cortices were also uncovered using a stochastic modeling approach. This, in turn, yielded a means by which to separate epileptogenic from eloquent cortex using hemodynamic LFOs. The proposed methodology detects epileptogenic cortices by exploiting the effective connectivity that exists within cortical regions displaying LFOs and the biophysical features contributed by the altered vessel networks within the epileptogenic cortex. It could be used in conjunction with existing technologies for epileptogenic/eloquent cortex localization and thereby facilitate clinical decision-making.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Epilepsia/diagnóstico por imagen , Cuidados Intraoperatorios , Imagen Multimodal , Adolescente , Niño , Craneotomía , Electroencefalografía , Epilepsia/patología , Epilepsia/cirugía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Vías Nerviosas/diagnóstico por imagen
19.
J Nanobiotechnology ; 14: 19, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26969152

RESUMEN

BACKGROUND: Apoptotic neuronal death is known as programmed cell death. Inhibition of this progression might contribute to a new treatment strategy. However, methods for in vivo detection of live apoptotic cells are in need to be developed and established. CONTEXT AND PURPOSE: The purpose of this study is to develop a new method for in vivo brain imaging for live apoptotic lesions using magnetic resonance imaging (MRI). We focused on the specific accumulation of our recently developed functional magnetic nanoparticles (FMNPs) into apoptotic cells using a rat cerebral ischemia model. Sulphorhodamine B, fluorescent dye was linked to valylalanylaspartic acid fluoromethyl ketone as a pan-caspase inhibitor to form SR-FLIVO. SR-FLIVO was bound with FMNPs to develop SR-FLIVO-FMNP probe. Ischemic rat brains were scanned by 7T MRI before and after intravenous injection of SR-FLIVO-FMNP and the distribution was evaluated by subtraction images of T2* colored mapping. SR-FLIVO, intracellular FMNPs, and T2* reduction area were histologically analyzed. The distribution of SR-FLIVO-FMNP was evaluated by subtracting the T2* signal images and was significantly correlated with the histological findings by TUNEL staining. RESULTS: Our experimental results revealed several findings where our newly developed probe SR-FLIVO-FMNP was intravenously administered into ischemic rats and FLIVO expression was tracked and found in apoptotic cells in rat brains after cerebral ischemia. A remarkable T2* reduction within the ischemic lesion was recorded using MRI based SR-FLIVO-FMNP probe as a contrasting agent due to the specific probe accumulation in apoptotic cells whereas, no observation of T2* reduction within the non-ischemic lesion due to no probe accumulation in non-apoptotic cells. Histological analysis based on the correlation between FLIVO and TUNEL staining showed that almost all FLIVO-positive cells were positive for TUNEL staining. These findings suggest the possibility for establishment of in vivo targeting delivery methods to live apoptotic cells based on conjugation of magnetic and fluorescent dual functional probes. CONCLUSION: A newly developed probe SR-FLIVO-FMNP might be considered as a useful probe for in vivo apoptotic detection, and FMNPs might be a strong platform for noninvasive imaging and targeting delivery.


Asunto(s)
Apoptosis/fisiología , Isquemia Encefálica/patología , Encéfalo/patología , Compuestos Férricos/administración & dosificación , Nanopartículas de Magnetita/administración & dosificación , Animales , Medios de Contraste/administración & dosificación , Imagen por Resonancia Magnética/métodos , Masculino , Ratas , Coloración y Etiquetado/métodos
20.
IEEE Trans Biomed Eng ; 63(1): 97-110, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26241965

RESUMEN

GOAL: We aim to evaluate the mechanisms underlying the neurovascular/metabolic coupling in the epileptogenic cortices of rats with chronic focal epilepsy. METHODS: We performed and analyzed intracranial recordings obtained from the seizure-onset zones during ictal periods on epileptic rats, and then, used these data to fit a metabolically coupled balloon model. Normal rats undergoing forepaw stimulation were used as control. RESULTS: We found a significant higher contribution from high local field potential frequency bands to the cerebral blood flow (CBF) responses in the epileptogenic cortices during ictal neuronal activities. The hemodynamic responses associated with ictal activities were distance-dependent with regard to the seizure focus, though varied in profiles from those obtained from acute seizure models. Parameters linking the CBF and relative concentration of deoxyhemoglobin to neuronal activity in the biophysical model were significantly different between epileptic and normal rats. CONCLUSION: We found that the coefficient associated with the strength of the functional hyperemic response was significantly larger in the epileptogenic cortices, and changes in hemoglobin concentration associated with ictal activity reflected the existence of a significantly higher baseline for oxygen metabolism in the epileptogenic cortices. SIGNIFICANCE: Introducing methods to estimate these physiological parameters would enhance our understanding of the neurovascular/metabolic coupling in epileptic brains and improve the localization accuracy on irritative zones and seizure-onset zones through neuroimaging techniques.


Asunto(s)
Circulación Cerebrovascular/fisiología , Epilepsias Parciales/fisiopatología , Modelos Biológicos , Consumo de Oxígeno/fisiología , Animales , Simulación por Computador , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...