Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826479

RESUMEN

Ischemia/reperfusion (I/R) injury significantly contributes to the morbidity and mortality associated with cardiac events. Poloxamer 188 (P188), a nonionic triblock copolymer, has been proposed to mitigate I/R injury by stabilizing cell membranes. However, the underlying mechanisms remain incompletely understood, particularly concerning endothelial cell function and nitric oxide (NO) production. We employed human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and endothelial cells (ECs) to elucidate the effects of P188 on cellular survival, function, and NO secretion under simulated I/R conditions. iPSC-CMs contractility and iPSC-ECs' NO production were assessed following exposure to P188. Further, an isolated heart model using Brown Norway rats subjected to I/R injury was utilized to evaluate the ex-vivo cardioprotective effects of P188, examining cardiac function and NO production, with and without the administration of a NO inhibitor. In iPSC-derived models, P188 significantly preserved CM contractile function and enhanced cell viability after hypoxia/reoxygenation. Remarkably, P188 treatment led to a pronounced increase in NO secretion in iPSC-ECs, a novel finding demonstrating endothelial protective effects beyond membrane stabilization. In the rat isolated heart model, administration of P188 during reperfusion notably improved cardiac function and reduced I/R injury markers. This cardioprotective effect was abrogated by NO inhibition, underscoring the pivotal role of NO. Additionally, a dose-dependent increase in NO production was observed in non-ischemic rat hearts treated with P188, further establishing the critical function of NO in P188 induced cardioprotection. In conclusion, our comprehensive study unveils a novel role of NO in mediating the protective effects of P188 against I/R injury. This mechanism is evident in both cellular models and intact rat hearts, highlighting the potential of P188 as a therapeutic agent against I/R injury. Our findings pave the way for further investigation into P188's therapeutic mechanisms and its potential application in clinical settings to mitigate I/R-related cardiac dysfunction.

2.
Cells ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38920675

RESUMEN

BACKGROUND: Ischemic post-conditioning (IPoC) has been shown to improve outcomes in limited pre-clinical models. As down-time is often unknown, this technique needs to be investigated over a range of scenarios. As this tool limits reperfusion injury, there may be limited benefit or even harm after short arrest and limited ischemia-reperfusion injury. METHODS: Eighteen male Wistar rats underwent 7 min of asphyxial arrest. Animals randomized to IPoC received a 20 s pause followed by 20 s of compressions, repeated four times, initiated 40 s into cardiopulmonary resuscitation. If return of spontaneous circulation (ROSC) was achieved, epinephrine was titrated to mean arterial pressure (MAP) of 70 mmHg. Data were analyzed using t-test or Mann-Whitney test. Significance set at p ≤ 0.05. RESULTS: The rate of ROSC was equivalent in both groups, 88%. There was no statistically significant difference in time to ROSC, epinephrine required post ROSC, carotid flow, or peak lactate at any timepoint. There was a significantly elevated MAP with IPoC, 90.7 mmHg (SD 13.9), as compared to standard CPR, 76.7 mmHg (8.5), 2 h after ROSC, p = 0.03. CONCLUSIONS: IPoC demonstrated no harm in a model of short arrest using a new arrest etiology for CPR based IPoC intervention in a rat model.


Asunto(s)
Asfixia , Modelos Animales de Enfermedad , Paro Cardíaco , Poscondicionamiento Isquémico , Ratas Wistar , Animales , Paro Cardíaco/terapia , Paro Cardíaco/complicaciones , Paro Cardíaco/fisiopatología , Masculino , Poscondicionamiento Isquémico/métodos , Ratas , Asfixia/complicaciones , Reanimación Cardiopulmonar/métodos , Epinefrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...