Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 31(12): e4459, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36177735

RESUMEN

D3/D2 sub-specificity is a complex problem to solve. Indeed, in the absence of easy structural biology of the G-protein coupled receptors, and despite key progresses in this area, the systematic knowledge of the ligand/receptor relationship is difficult to obtain. Due to these structural biology limitations concerning membrane proteins, we favored the use of directed mutagenesis to document a rational towards the discovery of markedly specific D3 ligands over D2 ligands together with basic binding experiments. Using our methodology of stable expression of receptors in HEK cells, we constructed the gene encoding for 24 mutants and 4 chimeras of either D2 or D3 receptors and expressed them stably. Those cell lines, expressing a single copy of one receptor mutant each, were stably constructed, selected, amplified and the membranes from them were prepared. Binding data at those receptors were obtained using standard binding conditions for D2 and D3 dopamine receptors. We generated 26 new molecules derived from D2 or D3 ligands. Using 8 reference compounds and those 26 molecules, we characterized their binding at those mutants and chimeras, exemplifying an approach to better understand the difference at the molecular level of the D2 and D3 receptors. Although all the individual results are presented and could be used for minute analyses, the present report does not discuss the differences between D2 and D3 data. It simply shows the feasibility of the approach and its potential.


Asunto(s)
Receptores de Dopamina D2 , Receptores de Dopamina D3 , Receptores de Dopamina D3/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Ligandos , Línea Celular , Mutagénesis
2.
Sci Rep ; 8(1): 13167, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177816

RESUMEN

Hibernation is an exceptional physiological response to a hostile environment, characterized by a seasonal period of torpor cycles involving dramatic reductions of body temperature and metabolism, and arousal back to normothermia. As the mechanisms regulating hibernation are still poorly understood, here we analysed the expression of genes involved in energy homeostasis, torpor regulation, and daily or seasonal timing using digital droplet PCR in various central and peripheral tissues sampled at different stages of torpor/arousal cycles in the European hamster. During torpor, the hypothalamus exhibited strongly down-regulated gene expression, suggesting that hypothalamic functions were reduced during this period of low metabolic activity. During both torpor and arousal, many structures (notably the brown adipose tissue) exhibited altered expression of deiodinases, potentially leading to reduced tissular triiodothyronine availability. During the arousal phase, all analysed tissues showed increased expression of the core clock genes Per1 and Per2. Overall, our data indicated that the hypothalamus and brown adipose tissue were the tissues most affected during the torpor/arousal cycle, and that clock genes may play critical roles in resetting the body's clocks at the beginning of the active period.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Nivel de Alerta/genética , Cricetulus/genética , Metabolismo Energético/genética , Hibernación/genética , Hipotálamo/metabolismo , Proteínas Circadianas Period/genética , Animales , Ritmo Circadiano/genética , Cricetulus/metabolismo , Europa (Continente) , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Anotación de Secuencia Molecular , Proteínas Circadianas Period/metabolismo , Triyodotironina/metabolismo
3.
Int J Mol Sci ; 19(7)2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973510

RESUMEN

For many years, it was of interest to identify the sequences encoding the two melatonin receptors (MT1 and MT2) from various species. After publishing the basic molecular characterization of the human, rat, mouse, sheep, and platypus MT1, MT2, or Mel1c receptors, we began cloning the genes from other animals, such as birds, bats, and vipers. The goal was to advance the receptor crystallization, which could greatly contribute the understanding of the sequence/stability relationship. European hamster MT1 receptor was cloned for the first time from this gender, was expressed in stable form in cells, and its binding characterized with a sample of 19 melatonin ligands. Siberian hamster (Phodopus sungorus) expresses a non-functional MT2. We observed that unlike this hamster, the European hamster (Cricetus cricetus) does not have a stop codon in the MT2 sequence. Thus, we undertook the tedious task of cloning the MT2 receptor. We partially succeeded, sequencing the complete exon 2 and a fragment of exon 1 (from putative amino acids 12 to 38 and 77 to 323), after several years of efforts. In order to show that the protein parts we cloned were capable to sustain some binding capacities, we designed a chimeric MT2 receptor using a consensus sequence to replace the unknown amino acids, based on other small rodent MT2 sequences. This chimeric construct could bind melatonin in the nanomolar range. This work is meant to be the basis for attempts from other laboratories of the community to determine the complete natural sequence of the European hamster MT2 receptor. The present work is the first to show that, among the hamsters, if the Siberian is a natural knockout for MT2, the European one is not.


Asunto(s)
Cricetinae/genética , Melatonina/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Codón de Terminación , Exones , Ligandos , Masculino , Unión Proteica , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
PLoS One ; 13(3): e0191904, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29529033

RESUMEN

Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.


Asunto(s)
Melatonina/metabolismo , Ornitorrinco/metabolismo , Receptores de Melatonina/metabolismo , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Clonación Molecular/métodos , Filogenia , Ornitorrinco/genética , Unión Proteica , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/química , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Receptores de Melatonina/química , Receptores de Melatonina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...