Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613449

RESUMEN

Olive oil phenols (OOPs) are associated with the prevention of many human cancers. Some of these have been shown to inhibit cell proliferation and induce apoptosis. However, no systematic comparative study exists for all the investigated compounds under the same conditions, due to difficulties in their isolation or synthesis. Herein are presented innovative methods for large-scale selective extraction of six major secoiridoids from olive oil or leaves enabling their detailed investigation. The cytotoxic/antiproliferative bioactivity of these six compounds was evaluated on sixteen human cancer cell lines originating from eight different tissues. Cell viability with half-maximal effective concentrations (EC50) was evaluated after 72 h treatments. Antiproliferative and pro-apoptotic effects were also assessed for the most bioactive compounds (EC50 ≤ 50 µM). Oleocanthal (1) showed the strongest antiproliferative/cytotoxic activity in most cancer cell lines (EC50: 9−20 µM). The relative effectiveness of the six OOPs was: oleocanthal (1) > oleuropein aglycone (3a,b) > ligstroside aglycone (4a,b) > oleacein (2) > oleomissional (6a,b,c) > oleocanthalic acid (7). This is the first detailed study comparing the bioactivity of six OOPs in such a wide array of cancer cell lines, providing a reference for their relative antiproliferative/cytotoxic effect in the investigated cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Olea , Humanos , Iridoides/farmacología , Aceite de Oliva/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Línea Celular
2.
Sci Rep ; 11(1): 22340, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785711

RESUMEN

Extra-virgin olive oil (EVOO) is a critical component of the Mediterranean diet, which has been found beneficial to human health. Bitterness is often positively associated with the presence of phenolic compounds in EVOO. There are twenty-five bitter taste receptors (TAS2Rs) in humans, each of which responds to specific bitter tastants. The identity of phenolic compounds and the bitter taste receptors they stimulate remain unknown. In this study, we isolated 12 phenolic and secoiridoid compounds from the olive fruit and the oil extracted from it, and tested their ability to stimulate bitter taste receptor activity, using a calcium mobilization functional assay. Our results showed that seven out of twelve studied compounds activated TAS2R8, and five of them activated TAS2R1, TAS2R8, and TAS2R14. The phenolic compounds oleuropein aglycon and ligstroside aglycon were the most potent bitter tastants in olive oil. TAS2R1 and TAS2R8 were the major bitter taste receptors activated most potently by these phenolic compounds. The results obtained here could be utilized to predict and control the bitterness of olive oil based on the concentration of specific bitter phenolics produced during the milling process of olives.


Asunto(s)
Iridoides/farmacología , Aceite de Oliva/química , Fenoles/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Iridoides/química , Fenoles/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética
3.
Front Plant Sci ; 12: 671487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539687

RESUMEN

Specialized metabolism is an evolutionary answer that fortifies plants against a wide spectrum of (a) biotic challenges. A plethora of diversified compounds can be found in the plant kingdom and often constitute the basis of human pharmacopeia. Olive trees (Olea europaea) produce an unusual type of secoiridoids known as oleosides with promising pharmaceutical activities. Here, we transiently silenced oleuropein ß-glucosidase (OeGLU), an enzyme engaged in the biosynthetic pathway of secoiridoids in the olive trees. Reduction of OeGLU transcripts resulted in the absence of both upstream and downstream secoiridoids in planta, revealing a regulatory loop mechanism that bypasses the flux of precursor compounds toward the branch of secoiridoid biosynthesis. Our findings highlight that OeGLU could serve as a molecular target to regulate the bioactive secoiridoids in olive oils.

4.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669887

RESUMEN

In the last few years, a new term, "High-phenolic olive oil", has appeared in scientific literature and in the market. However, there is no available definition of that term regarding the concentration limits of the phenolic ingredients of olive oil. For this purpose, we performed a large-scale screening and statistical evaluation of 5764 olive oil samples from Greece coming from >30 varieties for an eleven-year period with precisely measured phenolic content by qNMR. Although there is a large variation among the different cultivars, the mean concentration of total phenolic content was 483 mg/kg. The maximum concentration recorded in Greece reached 4003 mg/kg. We also observed a statistically significant correlation of the phenolic content with the harvest period and we also identified varieties affording olive oils with higher phenolic content. In addition, we performed a study of phenolic content loss during usual storage and we found an average loss of 46% in 12 months. We propose that the term high-phenolic should be used for olive oils with phenolic content > 500 mg/kg that will be able to retain the health claim limit (250 mg/kg) for at least 12 months after bottling. The term exceptionally high phenolic olive oil should be used for olive oil with phenolic content > 1200 mg/kg (top 5%).


Asunto(s)
Espectroscopía de Resonancia Magnética , Aceite de Oliva/química , Fenoles/análisis , Estadística como Asunto , Aldehídos/análisis , Monoterpenos Ciclopentánicos/análisis , Grecia , Fenoles/química , Preservación Biológica
5.
ACS Pharmacol Transl Sci ; 4(1): 179-192, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33615171

RESUMEN

Since the first discovery of its ibuprofen-like anti-inflammatory activity in 2005, the olive phenolic (-)-oleocanthal gained great scientific interest and popularity due to its reported health benefits. (-)-Oleocanthal is a monophenolic secoiridoid exclusively occurring in extra-virgin olive oil (EVOO). While several groups have investigated oleocanthal pharmacokinetics (PK) and disposition, none was able to detect oleocanthal in biological fluids or identify its PK profile that is essential for translational research studies. Besides, oleocanthal could not be detected following its addition to any fluid containing amino acids or proteins such as plasma or culture media, which could be attributed to its unique structure with two highly reactive aldehyde groups. Here, we demonstrate that oleocanthal spontaneously reacts with amino acids, with high preferential reactivity to glycine compared to other amino acids or proteins, affording two products: an unusual glycine derivative with a tetrahydropyridinium skeleton that is named oleoglycine, and our collective data supported the plausible formation of tyrosol acetate as the second product. Extensive studies were performed to validate and confirm oleocanthal reactivity, which were followed by PK disposition studies in mice, as well as cell culture transport studies to determine the ability of the formed derivatives to cross physiological barriers such as the blood-brain barrier. To the best of our knowledge, we are showing for the first time that (-)-oleocanthal is biochemically transformed to novel products in amino acids/glycine-containing fluids, which were successfully monitored in vitro and in vivo, creating a completely new perspective to understand the well-documented bioactivities of oleocanthal in humans.

6.
J Sci Food Agric ; 99(12): 5319-5326, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31038226

RESUMEN

BACKGROUND: Extra virgin olive oil is a food with a recognized health claim in the EU related to its phenolic content. Based on nuclear magnetic resonance (NMR) analysis, we observed for the first time that most high-phenolic olive oils also contain significant quantities of another potential beneficial ingredient, S-(E)-elenolide, which is a non-phenolic compound related to oleuropein or ligstroside. Elenolide had only been found in olive leaves and fruits as the Z isomer or had been synthesized and had been recognized as an antihypertensive agent. RESULTS: (E)-Elenolide was isolated from olive oil and its structure was elucidated and completely characterized for the first time using 1D and 2D NMR and gas chromatography-mass spectrometry. In addition, we developed a method of quantitative measurement based on qNMR. Investigation of 2120 olive oil samples showed that elenolide was present in the majority of samples, in quantities ranging from 0 to 2821 mg kg-1 . Although elenolic acid, which is a hydrated derivative of elenolide, had been reported as an olive oil ingredient, this is the first time that elenolide has proved to be transformed to elenolic acid after reaction with water. Finally, it was found that the quantity of elenolide in olive oil depends on the quantity of water remaining in the olive oil during storage. CONCLUSION: S-(E)-Elenolide is a new important substance of olive oil and could be used as marker of high-quality oils with low water content. © 2019 Society of Chemical Industry.


Asunto(s)
Olea/química , Aceite de Oliva/química , Extractos Vegetales/química , Frutas/química , Isomerismo , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA