Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 12(24)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38132142

RESUMEN

The tumor microenvironment (TME) has emerged as a valuable therapeutic target in glioblastoma (GBM), as it promotes tumorigenesis via an increased production of reactive oxygen species (ROS). Immune cells such as microglia accumulate near the tumor and its hypoxic core, fostering tumor proliferation and angiogenesis. In this study, we explored the therapeutic potential of natural polyphenols with antioxidant and anti-inflammatory properties. Notably, flavonoids, including fisetin and quercetin, can protect non-cancerous cells while eliminating transformed cells (2D cultures and 3D tumoroids). We tested the hypothesis that fisetin and quercetin are modulators of redox-responsive transcription factors, for which subcellular location plays a critical role. To investigate the sites of interaction between natural compounds and stress-responsive transcription factors, we combined molecular docking with experimental methods employing proximity ligation assays. Our findings reveal that fisetin decreased cytosolic acetylated high mobility group box 1 (acHMGB1) and increased transcription factor EB (TFEB) abundance in microglia but not in GBM. Moreover, our results suggest that the most powerful modulator of the Nrf2-KEAP1 complex is fisetin. This finding is in line with molecular modeling and calculated binding properties between fisetin and Nrf2-KEAP1, which indicated more sites of interactions and stronger binding affinities than quercetin.


Asunto(s)
Flavonoides , Glioblastoma , Humanos , Flavonoides/farmacología , Quercetina/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Glioblastoma/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Microambiente Tumoral
2.
FEBS Open Bio ; 9(9): 1589-1602, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31314152

RESUMEN

Ragulator is a pentamer composed of p18, MP1, p14, C7orf59, and hepatitis B virus X-interacting protein (HBXIP; LAMTOR 1-5) which acts as a lysosomal scaffold of the Rag GTPases in the amino acid sensitive branch of TORC1 signaling. Here, we present the crystal structure of human HBXIP-C7orf59 dimer (LAMTOR 4/5) at 2.9 Å and identify a phosphorylation site on C7orf59 which modulates its interaction with p18. Additionally, we demonstrate the requirement of HBXIP-C7orf59 to stabilize p18 and allow further binding of MP1-p14. The structure of the dimer revealed an unfolded N terminus in C7orf59 (residues 1-15) which was shown to be essential for p18 binding. Full-length p18 does not interact stably with MP1-p14 in the absence of HBXIP-C7orf59, but deletion of p18 residues 108-161 rescues MP1-p14 binding. C7orf59 was phosphorylated by protein kinase A (PKA) in vitro and mutation of the conserved Ser67 residue to aspartate prevented phosphorylation and negatively affected the C7orf59 interaction with p18 both in cell culture and in vitro. C7orf59 Ser67 was phosphorylated in human embryonic kidney 293T cells. PKA activation with forskolin induced dissociation of p18 from C7orf59, which was prevented by the PKA inhibitor H-89. Our results highlight the essential role of HBXIP-C7orf59 dimer as a nucleator of pentameric Ragulator and support a sequential model of Ragulator assembly in which HBXIP-C7orf59 binds and stabilizes p18 which allows subsequent binding of MP1-p14.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Fosforilación , Conformación Proteica
3.
Int J Biol Macromol ; 137: 205-214, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31229549

RESUMEN

The serine/arginine-rich protein kinase 2 (SRPK2) has been reported as upregulated in several cancer types, with roles in hallmarks such as cell migration, growth, and apoptosis. These findings have indicated that SRPK2 is a promising emerging target in drug discovery initiatives. Although high-resolution models are available for SRPK2 (PDB 2X7G), they have been obtained with a heavily truncated recombinant protein version (~50% of the primary structure), due to the presence of long intrinsically unstructured regions. In the present work, we sought to characterize the structure of a full-length recombinant version of SRPK2 in solution. Low-resolution Small-Angle X-ray Scattering data were obtained for both versions of SRPK2. The truncated ΔNΔS-SRPK2 presented a propensity to dimerize at higher concentrations whereas the full-length SRPK2 was mainly found as dimers. The hydrodynamic behavior of the full-length SRPK2 was further investigated by analytical size exclusion chromatography and sedimentation velocity analytical ultracentrifugation experiments. SRPK2 behaved as a monomer-dimer equilibrium and both forms have an elongated shape in solution, pointing to a stretched-to-closed tendency among the conformational plasticity observed. Taken together, these findings allowed us to define unique structural features of the SRPK2 within SRPK family, characterized by its flexible regions outside the bipartite kinase domain.


Asunto(s)
Hidrodinámica , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes , Conformación Proteica , Proteínas Serina-Treonina Quinasas/genética , Soluciones , Análisis Espectral , Relación Estructura-Actividad
4.
Front Plant Sci ; 8: 1077, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690620

RESUMEN

Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.

5.
Sci Rep ; 6: 30813, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27489114

RESUMEN

TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/ß region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase's active site, providing a structural framework for the function of TIPRL in PP2A inhibition.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pliegue de Proteína , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Fosforilación/fisiología , Unión Proteica/genética , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA