Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 21(5): e48977, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32285620

RESUMEN

Alternative splicing (AS) is a major source of transcriptome diversity. Long noncoding RNAs (lncRNAs) have emerged as regulators of AS through different molecular mechanisms. In Arabidopsis thaliana, the AS regulators NSRs interact with the ALTERNATIVE SPLICING COMPETITOR (ASCO) lncRNA. Here, we analyze the effect of the knock-down and overexpression of ASCO at the genome-wide level and find a large number of deregulated and differentially spliced genes related to flagellin responses and biotic stress. In agreement, ASCO-silenced plants are more sensitive to flagellin. However, only a minor subset of deregulated genes overlaps with the AS defects of the nsra/b double mutant, suggesting an alternative way of action for ASCO. Using biotin-labeled oligonucleotides for RNA-mediated ribonucleoprotein purification, we show that ASCO binds to the highly conserved spliceosome component PRP8a. ASCO overaccumulation impairs the recognition of specific flagellin-related transcripts by PRP8a. We further show that ASCO also binds to another spliceosome component, SmD1b, indicating that it interacts with multiple splicing factors. Hence, lncRNAs may integrate a dynamic network including spliceosome core proteins, to modulate transcriptome reprogramming in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Empalme Alternativo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Empalme de ARN/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma
2.
Plant Cell Physiol ; 60(9): 1906-1916, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31106828

RESUMEN

As sessile organisms, plants are continuously exposed to a wide range of biotic interactions. While some biotic interactions are beneficial or even essential for the plant (e.g. rhizobia and mycorrhiza), others such as pathogens are detrimental and require fast adaptation. Plants partially achieve this growth and developmental plasticity by modulating the repertoire of genes they express. In the past few years, high-throughput transcriptome sequencing have revealed that, in addition to transcriptional control of gene expression, post-transcriptional processes, notably alternative splicing (AS), emerged as a key mechanism for gene regulation during plant adaptation to the environment. AS not only can increase proteome diversity by generating multiple transcripts from a single gene but also can reduce gene expression by yielding isoforms degraded by mechanisms such as nonsense-mediated mRNA decay. In this review, we will summarize recent discoveries detailing the contribution of AS to the regulation of plant-microbe interactions, with an emphasis on the modulation of immunity receptor function and other components of the signaling pathways that deal with pathogen responses. We will also discuss emerging evidences that AS could contribute to dynamic reprogramming of the plant transcriptome during beneficial interactions, such as the legume-symbiotic interaction.


Asunto(s)
Empalme Alternativo , Interacciones Huésped-Patógeno , Micorrizas/fisiología , Degradación de ARNm Mediada por Codón sin Sentido , Plantas/genética , Rhizobium/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas/microbiología , Isoformas de Proteínas/metabolismo , Transducción de Señal , Estrés Fisiológico , Transcriptoma
3.
Front Plant Sci ; 9: 1209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186296

RESUMEN

Nuclear speckle RNA binding proteins (NSRs) act as regulators of alternative splicing (AS) and auxin-regulated developmental processes such as lateral root formation in Arabidopsis thaliana. These proteins were shown to interact with specific alternatively spliced mRNA targets and at least with one structured lncRNA, named Alternative Splicing Competitor RNA. Here, we used genome-wide analysis of RNAseq to monitor the NSR global role on multiple tiers of gene expression, including RNA processing and AS. NSRs affect AS of 100s of genes as well as the abundance of lncRNAs particularly in response to auxin. Among them, the FPA floral regulator displayed alternative polyadenylation and differential expression of antisense COOLAIR lncRNAs in nsra/b mutants. This may explains the early flowering phenotype observed in nsra and nsra/b mutants. GO enrichment analysis of affected lines revealed a novel link of NSRs with the immune response pathway. A RIP-seq approach on an NSRa fusion protein in mutant background identified that lncRNAs are privileged direct targets of NSRs in addition to specific AS mRNAs. The interplay of lncRNAs and AS mRNAs in NSR-containing complexes may control the crosstalk between auxin and the immune response pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...