Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nucleic Acids Res ; 52(D1): D229-D238, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37843123

RESUMEN

We describe the Mitochondrial and Nuclear rRNA fragment database (MINRbase), a knowledge repository aimed at facilitating the study of ribosomal RNA-derived fragments (rRFs). MINRbase provides interactive access to the profiles of 130 238 expressed rRFs arising from the four human nuclear rRNAs (18S, 5.8S, 28S, 5S), two mitochondrial rRNAs (12S, 16S) or four spacers of 45S pre-rRNA. We compiled these profiles by analyzing 11 632 datasets, including the GEUVADIS and The Cancer Genome Atlas (TCGA) repositories. MINRbase offers a user-friendly interface that lets researchers issue complex queries based on one or more criteria, such as parental rRNA identity, nucleotide sequence, rRF minimum abundance and metadata keywords (e.g. tissue type, disease). A 'summary' page for each rRF provides a granular breakdown of its expression by tissue type, disease, sex, ancestry and other variables; it also allows users to create publication-ready plots at the click of a button. MINRbase has already allowed us to generate support for three novel observations: the internal spacers of 45S are prolific producers of abundant rRFs; many abundant rRFs straddle the known boundaries of rRNAs; rRF production is regimented and depends on 'personal attributes' (sex, ancestry) and 'context' (tissue type, tissue state, disease). MINRbase is available at https://cm.jefferson.edu/MINRbase/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Mitocondrial , ARN Ribosómico , Humanos , Secuencia de Bases , Mitocondrias/genética , Ribosomas , ARN Mitocondrial/genética , ARN Ribosómico/genética
2.
Noncoding RNA ; 9(6)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37987365

RESUMEN

Transfer RNA-derived fragments (tRFs) are noncoding RNAs that arise from either mature transfer RNAs (tRNAs) or their precursors. One important category of tRFs comprises the tRNA halves, which are generated through cleavage at the anticodon. A given tRNA typically gives rise to several co-expressed 5'-tRNA halves (5'-tRHs) that differ in the location of their 3' ends. These 5'-tRHs, even though distinct, have traditionally been treated as indistinguishable from one another due to their near-identical sequences and lengths. We focused on co-expressed 5'-tRHs that arise from the same tRNA and systematically examined their exact sequences and abundances across 10 different human tissues. To this end, we manually curated and analyzed several hundred human RNA-seq datasets from NCBI's Sequence Run Archive (SRA). We grouped datasets from the same tissue into their own collection and examined each group separately. We found that a given tRNA produces different groups of co-expressed 5'-tRHs in different tissues, different cell lines, and different diseases. Importantly, the co-expressed 5'-tRHs differ in their sequences, absolute abundances, and relative abundances, even among tRNAs with near-identical sequences from the same isodecoder or isoacceptor group. The findings suggest that co-expressed 5'-tRHs that are produced from the same tRNA or closely related tRNAs have distinct, context-dependent roles. Moreover, our analyses show that cell lines modeling the same tissue type and disease may not be interchangeable when it comes to experimenting with tRFs.

3.
J Thromb Haemost ; 21(11): 3252-3267, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37558133

RESUMEN

BACKGROUND: The small noncoding RNAs (sncRNAs) in megakaryocytes (MKs) and platelets are not well characterized. Neither is the impact of SARS-CoV-2 infection on the sncRNAs of platelets. OBJECTIVES: To investigate the sorting of MK sncRNAs into platelets, and the differences in the platelet sncRNAomes of healthy donors (HDs) and COVID-19 patients. METHODS: We comprehensively profiled sncRNAs from MKs cultured from cord blood-derived CD34+ cells, platelets from HDs, and platelets from patients with moderate and severe SARS-CoV-2 infection. We also comprehensively profiled Argonaute (AGO)-bound sncRNAs from the cultured MKs. RESULTS: We characterized the sncRNAs in MKs and platelets and can account for ∼95% of all sequenced reads. We found that MKs primarily comprise microRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), rRNA-derived fragments (rRFs), and Y RNA-derived fragments (yRFs) in comparable abundances. The platelets of HDs showed a skewed distribution by comparison: 56.7% of all sncRNAs are yRFs, 34.4% are isomiRs, and <2.0% are tRFs and rRFs. Most isomiRs in MKs and platelets are either noncanonical, nontemplated, or both. When comparing MKs and platelets from HDs, we found numerous isomiRs, tRFs, rRFs, and yRFs showing opposite enrichments or depletions, including molecules from the same parental miRNA arm, tRNA, rRNA, or Y RNA. The sncRNAome of platelets from patients with COVID-19 is skewed compared to that of HDs with only 19.8% of all sncRNAs now being yRFs, isomiRs increasing to 63.6%, and tRFs and rRFs more than tripling their presence to 6.1%. CONCLUSION: The sncRNAomes of MKs and platelets are very rich and more complex than it has been believed. The evidence suggests complex mechanisms that sort MK sncRNAs into platelets. SARS-CoV-2 infection acutely alters the contents of platelets by changing the relative proportions of their sncRNAs.


Asunto(s)
COVID-19 , MicroARNs , ARN Pequeño no Traducido , Humanos , Megacariocitos , SARS-CoV-2/genética , Plaquetas , MicroARNs/genética , ARN de Transferencia/genética
4.
PLOS Digit Health ; 2(6): e0000263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37267229

RESUMEN

Trauma centers use registry data to benchmark performance using a standardized risk adjustment model. Our objective was to utilize national claims to develop a risk adjustment model applicable across all hospitals, regardless of designation or registry participation. Patients from 2013-14 Pennsylvania Trauma Outcomes Study (PTOS) registry data were probabilistically matched to Medicare claims using demographic and injury characteristics. Pairwise comparisons established facility linkages and matching was then repeated within facilities to link records. Registry models were estimated using GLM and compared with five claims-based LASSO models: demographics, clinical characteristics, diagnosis codes, procedures codes, and combined demographics/clinical characteristics. Area under the curve and correlation with registry model probability of death were calculated for each linked and out-of-sample cohort. From 29 facilities, a cohort comprising 16,418 patients were linked between datasets. Patients were similarly distributed: median age 82 (PTOS IQR: 74-87 vs. Medicare IQR: 75-88); non-white 6.2% (PTOS) vs. 5.8% (Medicare). The registry model AUC was 0.86 (0.84-0.87). Diagnosis and procedure codes models performed poorest. The demographics/clinical characteristics model achieved an AUC = 0.84 (0.83-0.86) and Spearman = 0.62 with registry data. Claims data can be leveraged to create models that accurately measure the performance of hospitals that treat trauma patients.

5.
PLoS Comput Biol ; 18(11): e1010615, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36355750

RESUMEN

The "replication crisis" is a methodological problem in which many scientific research findings have been difficult or impossible to replicate. Because the reproducibility of empirical results is an essential aspect of the scientific method, such failures endanger the credibility of theories based on them and possibly significant portions of scientific knowledge. An instance of the replication crisis, analytic replication, pertains to reproducing published results through computational reanalysis of the authors' original data. However, direct replications are costly, time-consuming, and unrewarded in today's publishing standards. We propose that bioinformatics and computational biology students replicate recent discoveries as part of their curriculum. Considering the above, we performed a pilot study in one of the graduate-level courses we developed and taught at our University. The course is entitled Intro to R Programming and is meant for students in our Master's and PhD programs who have little to no programming skills. As the course emphasized real-world data analysis, we thought it would be an appropriate setting to carry out this study. The primary objective was to expose the students to real biological data analysis problems. These include locating and downloading the needed datasets, understanding any underlying conventions and annotations, understanding the analytical methods, and regenerating multiple graphs from their assigned article. The secondary goal was to determine whether the assigned articles contained sufficient information for a graduate-level student to replicate its figures. Overall, the students successfully reproduced 39% of the figures. The main obstacles were the need for more advanced programming skills and the incomplete documentation of the applied methods. Students were engaged, enthusiastic, and focused throughout the semester. We believe that this teaching approach will allow students to make fundamental scientific contributions under appropriate supervision. It will teach them about the scientific process, the importance of reporting standards, and the importance of openness.


Asunto(s)
Curriculum , Educación de Postgrado , Humanos , Proyectos Piloto , Reproducibilidad de los Resultados , Educación de Postgrado/métodos , Estudiantes , Enseñanza
6.
Trends Cancer ; 8(12): 1002-1018, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35915015

RESUMEN

The contributions of mitochondria to cancer have been recognized for decades. However, the focus on the metabolic role of mitochondria and the diminutive size of the mitochondrial genome compared to the nuclear genome have hindered discovery of the roles of mitochondrial genetics in cancer. This review summarizes recent data demonstrating the contributions of mitochondrial DNA (mtDNA) copy-number variants (CNVs), somatic mutations, and germline polymorphisms to cancer initiation, progression, and metastasis. The goal is to summarize accumulating data to establish a framework for exploring the contributions of mtDNA to neoplasia and metastasis.


Asunto(s)
Genoma Mitocondrial , Neoplasias , Humanos , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Neoplasias/patología , Núcleo Celular/metabolismo
7.
J Immunol ; 208(3): 603-617, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022277

RESUMEN

MicroRNAs (miRNAs/miRs) are small, endogenous noncoding RNAs that are important post-transcriptional regulators with clear roles in the development of the immune system and immune responses. Using miRNA microarray profiling, we characterized the expression profile of naive and in vivo generated murine effector antiviral CD8+ T cells. We observed that out of 362 measurable mature miRNAs, 120 were differentially expressed by at least 2-fold in influenza-specific effector CD8+ CTLs compared with naive CD8+ T cells. One miRNA found to be highly downregulated on both strands in effector CTLs was miR-139. Because previous studies have indicated a role for miR-139-mediated regulation of CTL effector responses, we hypothesized that deletion of miR-139 would enhance antiviral CTL responses during influenza virus infection. We generated miR-139-/- mice or overexpressed miR-139 in T cells to assess the functional contribution of miR-139 expression in CD8+ T cell responses. Our study demonstrates that the development of naive T cells and generation or differentiation of effector or memory CD8+ T cell responses to influenza virus infection are not impacted by miR-139 deficiency or overexpression; yet, miR-139-/- CD8+ T cells are outcompeted by wild-type CD8+ T cells in a competition setting and demonstrate reduced responses to Listeria monocytogenes Using an in vitro model of T cell exhaustion, we confirmed that miR-139 expression similarly does not impact the development of T cell exhaustion. We conclude that despite significant downregulation of miR-139 following in vivo and in vitro activation, miR-139 expression is dispensable for influenza-specific CTL responses.


Asunto(s)
Virus de la Influenza A/inmunología , Listeria monocytogenes/inmunología , MicroARNs/genética , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Regulación hacia Abajo/genética , Femenino , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología
9.
Blood Cells Mol Dis ; 92: 102624, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34775219

RESUMEN

The purpose of this research was to assess the effects of a microRNA (miRNA) cluster on platelet production. Human chromosome 19q13.41 harbors an evolutionarily conserved cluster of three miRNA genes (MIR99B, MIRLET7E, MIR125A) within 727 base-pairs. We now report that levels of miR-99b-5p, miR-let7e-5p and miR-125a-5p are strongly correlated in human platelets, and all are positively associated with platelet count, but not white blood count or hemoglobin level. Although the cluster regulates hematopoietic stem cell proliferation, the function of this genomic locus in megakaryocyte (MK) differentiation and platelet production is unknown. Furthermore, studies of individual miRNAs do not represent broader effects in the context of a cluster. To address this possibility, MK/platelet lineage-specific Mir-99b/let7e/125a knockout mice were generated. Compared to wild type littermates, cluster knockout mice had significantly lower platelet counts and reduced MK proplatelet formation, but no differences in MK numbers, ploidy, maturation or ultra-structural morphology, and no differences in platelet function. Compared to wild type littermates, knockout mice showed similar survival after pulmonary embolism. The major conclusions are that the effect of the Mir-99b/let7e/125a cluster is confined to a late stage of thrombopoiesis, and this effect on platelet number is uncoupled from platelet function.


Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , MicroARNs/genética , Animales , Plaquetas/citología , Eliminación de Gen , Humanos , Megacariocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Trombocitopenia/genética , Trombopoyesis
10.
Nat Commun ; 12(1): 4498, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301931

RESUMEN

In animal germlines, PIWI proteins and the associated PIWI-interacting RNAs (piRNAs) protect genome integrity by silencing transposons. Here we report the extensive sequence and quantitative correlations between 2',3'-cyclic phosphate-containing RNAs (cP-RNAs), identified using cP-RNA-seq, and piRNAs in the Bombyx germ cell line and mouse testes. The cP-RNAs containing 5'-phosphate (P-cP-RNAs) identified by P-cP-RNA-seq harbor highly consistent 5'-end positions as the piRNAs and are loaded onto PIWI protein, suggesting their direct utilization as piRNA precursors. We identified Bombyx RNase Kappa (BmRNase κ) as a mitochondria-associated endoribonuclease which produces cP-RNAs during piRNA biogenesis. BmRNase κ-depletion elevated transposon levels and disrupted a piRNA-mediated sex determination in Bombyx embryos, indicating the crucial roles of BmRNase κ in piRNA biogenesis and embryonic development. Our results reveal a BmRNase κ-engaged piRNA biogenesis pathway, in which the generation of cP-RNAs promotes robust piRNA production.


Asunto(s)
Endorribonucleasas/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Insectos/genética , ARN Interferente Pequeño/genética , ARN/genética , Animales , Secuencia de Bases , Bombyx , Línea Celular , Endorribonucleasas/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Masculino , Ratones Endogámicos C57BL , Mutación , Ácidos Fosfatidicos/química , ARN/química , ARN/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , RNA-Seq/métodos , Testículo/metabolismo
11.
Cell Death Dis ; 12(5): 473, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980826

RESUMEN

Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.


Asunto(s)
Melanoma/genética , MicroARNs/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Melanoma/patología , Persona de Mediana Edad , Neoplasias Cutáneas/patología
12.
BMC Biol ; 19(1): 60, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33765992

RESUMEN

BACKGROUND: Extensive molecular differences exist between proliferative and differentiated cells. Here, we conduct a meta-analysis of publicly available transcriptomic datasets from preimplantation and differentiation stages examining the architectural properties and content of genes whose abundance changes significantly across developmental time points. RESULTS: Analysis of preimplantation embryos from human and mouse showed that short genes whose introns are enriched in Alu (human) and B (mouse) elements, respectively, have higher abundance in the blastocyst compared to the zygote. These highly expressed genes encode ribosomal proteins or metabolic enzymes. On the other hand, long genes whose introns are depleted in repetitive elements have lower abundance in the blastocyst and include genes from signaling pathways. Additionally, the sequences of the genes that are differentially expressed between the blastocyst and the zygote contain distinct collections of pyknon motifs that differ between up- and down-regulated genes. Further examination of the genes that participate in the stem cell-specific protein interaction network shows that their introns are short and enriched in Alu (human) and B (mouse) elements. As organogenesis progresses, in both human and mouse, we find that the primarily short and repeat-rich expressed genes make way for primarily longer, repeat-poor genes. With that in mind, we used a machine learning-based approach to identify gene signatures able to classify human adult tissues: we find that the most discriminatory genes comprising these signatures have long introns that are repeat-poor and include transcription factors and signaling-cascade genes. The introns of widely expressed genes across human tissues, on the other hand, are short and repeat-rich, and coincide with those with the highest expression at the blastocyst stage. CONCLUSIONS: Protein-coding genes that are characteristic of each trajectory, i.e., proliferation/pluripotency or differentiation, exhibit antithetical biases in their intronic and exonic lengths and in their repetitive-element content. While the respective human and mouse gene signatures are functionally and evolutionarily conserved, their introns and exons are enriched or depleted in organism-specific repetitive elements. We posit that these organism-specific repetitive sequences found in exons and introns are used to effect the corresponding genes' regulation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes , Animales , Blastocisto/citología , Blastocisto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Secuencias Repetitivas de Ácidos Nucleicos
13.
Bioinformatics ; 37(13): 1828-1838, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-33471076

RESUMEN

MOTIVATION: MicroRNA (miRNA) precursor arms give rise to multiple isoforms simultaneously called 'isomiRs.' IsomiRs from the same arm typically differ by a few nucleotides at either their 5' or 3' termini or both. In humans, the identities and abundances of isomiRs depend on a person's sex and genetic ancestry as well as on tissue type, tissue state and disease type/subtype. Moreover, nearly half of the time the most abundant isomiR differs from the miRNA sequence found in public databases. Accurate mining of isomiRs from deep sequencing data is thus important. RESULTS: We developed isoMiRmap, a fast, standalone, user-friendly mining tool that identifies and quantifies all isomiRs by directly processing short RNA-seq datasets. IsoMiRmap is a portable 'plug-and-play' tool, requires minimal setup, has modest computing and storage requirements, and can process an RNA-seq dataset with 50 million reads in just a few minutes on an average laptop. IsoMiRmap deterministically and exhaustively reports all isomiRs in a given deep sequencing dataset and quantifies them accurately (no double-counting). IsoMiRmap comprehensively reports all miRNA precursor locations from which an isomiR may be transcribed, tags as 'ambiguous' isomiRs whose sequences exist both inside and outside of the space of known miRNA sequences and reports the public identifiers of common single-nucleotide polymorphisms and documented somatic mutations that may be present in an isomiR. IsoMiRmap also identifies isomiRs with 3' non-templated post-transcriptional additions. Compared to similar tools, isoMiRmap is the fastest, reports more bona fide isomiRs, and provides the most comprehensive information related to an isomiR's transcriptional origin. AVAILABILITY AND IMPLEMENTATION: The codes for isoMiRmap are freely available at https://cm.jefferson.edu/isoMiRmap/ and https://github.com/TJU-CMC-Org/isoMiRmap/. IsomiR profiles for the datasets of the 1000 Genomes Project, spanning five population groups, and The Cancer Genome Atlas (TCGA), spanning 33 cancer studies, are also available at https://cm.jefferson.edu/isoMiRmap/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

14.
Sci Rep ; 10(1): 21782, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311640

RESUMEN

Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harboring addition or deletion of one or more nucleotides at the 5' and/or 3' ends of the canonical miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment was associated with the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was composed by non-canonical sequences. Metformin significantly affects the relative abundance of 133 isomiRs, including the non-canonical forms of the aforementioned miRNAs. Pathway enrichment analysis suggested that pathways associated with proliferation and nutrient sensing are modulated by metformin-regulated miRNAs and that some of the regulated isomiRs (e.g. the 5' miR-217 isomiR) are endowed with alternative seed sequences and share less than half of the predicted targets with the canonical form. Our results show that metformin reshapes the senescence-associated miRNA/isomiR patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Metformina/farmacología , MicroARNs/biosíntesis , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Factores de Tiempo
15.
Nucleic Acids Res ; 48(17): 9433-9448, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32890397

RESUMEN

The fragments that derive from transfer RNAs (tRNAs) are an emerging category of regulatory RNAs. Known as tRFs, these fragments were reported for the first time only a decade ago, making them a relatively recent addition to the ever-expanding pantheon of non-coding RNAs. tRFs are short, 16-35 nucleotides (nts) in length, and produced through cleavage of mature and precursor tRNAs at various positions. Both cleavage positions and relative tRF abundance depend strongly on context, including the tissue type, tissue state, and disease, as well as the sex, population of origin, and race/ethnicity of an individual. These dependencies increase the urgency to understand the regulatory roles of tRFs. Such efforts are gaining momentum, and comprise experimental and computational approaches. System-level studies across many tissues and thousands of samples have produced strong evidence that tRFs have important and multi-faceted roles. Here, we review the relevant literature on tRF biology in higher organisms, single cell eukaryotes, and prokaryotes.


Asunto(s)
Neoplasias/genética , Enfermedades del Sistema Nervioso/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Virosis/genética , Animales , Enzimas/metabolismo , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida , Neoplasias/mortalidad , Estabilidad del ARN , ARN de Transferencia/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Estrés Fisiológico/genética
16.
BMC Biol ; 18(1): 38, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32279660

RESUMEN

BACKGROUND: The advent of next generation sequencing (NGS) has allowed the discovery of short and long non-coding RNAs (ncRNAs) in an unbiased manner using reverse genetics approaches, enabling the discovery of multiple categories of ncRNAs and characterization of the way their expression is regulated. We previously showed that the identities and abundances of microRNA isoforms (isomiRs) and transfer RNA-derived fragments (tRFs) are tightly regulated, and that they depend on a person's sex and population origin, as well as on tissue type, tissue state, and disease type. Here, we characterize the regulation and distribution of fragments derived from ribosomal RNAs (rRNAs). rRNAs form a group that includes four (5S, 5.8S, 18S, 28S) rRNAs encoded by the human nuclear genome and two (12S, 16S) by the mitochondrial genome. rRNAs constitute the most abundant RNA type in eukaryotic cells. RESULTS: We analyzed rRNA-derived fragments (rRFs) across 434 transcriptomic datasets obtained from lymphoblastoid cell lines (LCLs) derived from healthy participants of the 1000 Genomes Project. The 434 datasets represent five human populations and both sexes. We examined each of the six rRNAs and their respective rRFs, and did so separately for each population and sex. Our analysis shows that all six rRNAs produce rRFs with unique identities, normalized abundances, and lengths. The rRFs arise from the 5'-end (5'-rRFs), the interior (i-rRFs), and the 3'-end (3'-rRFs) or straddle the 5' or 3' terminus of the parental rRNA (x-rRFs). Notably, a large number of rRFs are produced in a population-specific or sex-specific manner. Preliminary evidence suggests that rRF production is also tissue-dependent. Of note, we find that rRF production is not affected by the identity of the processing laboratory or the library preparation kit. CONCLUSIONS: Our findings suggest that rRFs are produced in a regimented manner by currently unknown processes that are influenced by both ubiquitous as well as population-specific and sex-specific factors. The properties of rRFs mirror the previously reported properties of isomiRs and tRFs and have implications for the study of homeostasis and disease.


Asunto(s)
MicroARNs/genética , ARN Ribosómico/genética , Anciano , Línea Celular , Femenino , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , ARN Ribosómico/metabolismo , Factores Sexuales , Transcriptoma
17.
Gut ; 69(10): 1818-1831, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31988194

RESUMEN

OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.


Asunto(s)
Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales , Neovascularización Patológica , ARN Largo no Codificante , Factor de Transcripción STAT3/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Terapia Genética , Humanos , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Pruebas de Farmacogenómica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Pigment Cell Melanoma Res ; 33(1): 52-62, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31283110

RESUMEN

Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults. With over 50% of patients developing metastatic disease, there is an unmet need for improved diagnostic and therapeutic options. Efforts to understand the molecular biology of the disease have revealed several markers that correlate with patient prognosis, including the copy number of chromosome 3, genetic alterations in the BAP1, EIF1AX and SF3B1 genes, and other transcriptional features. Here, we expand upon previous reports by comprehensively characterizing the short RNA-ome in 80 primary UVM tumor samples. In particular, we describe a previously unseen complex network involving numerous regulatory molecules that comprise microRNA (miRNAs), novel UVM-specific miRNA loci, miRNA isoforms (isomiRs), and tRNA-derived fragments (tRFs). Importantly, we show that the abundance profiles of isomiRs and tRFs associate with various molecular phenotypes, metastatic disease, and patient survival. Our findings suggest deep involvement of isomiRs and tRFs in the disease etiology of UVM. We posit that further study and characterization of these novel molecules will improve understanding of the mechanisms underlying UVM, and lead to the development of new diagnostic and therapeutic approaches.


Asunto(s)
Melanoma/genética , Melanoma/patología , MicroARNs/genética , ARN de Transferencia/genética , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Progresión de la Enfermedad , Femenino , Sitios Genéticos , Humanos , Masculino , MicroARNs/metabolismo , Metástasis de la Neoplasia , ARN de Transferencia/metabolismo , Análisis de Supervivencia
19.
Bioinformatics ; 36(3): 698-703, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504201

RESUMEN

MOTIVATION: MicroRNAs (miRNAs) are small RNA molecules (∼22 nucleotide long) involved in post-transcriptional gene regulation. Advances in high-throughput sequencing technologies led to the discovery of isomiRs, which are miRNA sequence variants. While many miRNA-seq analysis tools exist, the diversity of output formats hinders accurate comparisons between tools and precludes data sharing and the development of common downstream analysis methods. RESULTS: To overcome this situation, we present here a community-based project, miRNA Transcriptomic Open Project (miRTOP) working towards the optimization of miRNA analyses. The aim of miRTOP is to promote the development of downstream isomiR analysis tools that are compatible with existing detection and quantification tools. Based on the existing GFF3 format, we first created a new standard format, mirGFF3, for the output of miRNA/isomiR detection and quantification results from small RNA-seq data. Additionally, we developed a command line Python tool, mirtop, to create and manage the mirGFF3 format. Currently, mirtop can convert into mirGFF3 the outputs of commonly used pipelines, such as seqbuster, isomiR-SEA, sRNAbench, Prost! as well as BAM files. Some tools have also incorporated the mirGFF3 format directly into their code, such as, miRge2.0, IsoMIRmap and OptimiR. Its open architecture enables any tool or pipeline to output or convert results into mirGFF3. Collectively, this isomiR categorization system, along with the accompanying mirGFF3 and mirtop API, provide a comprehensive solution for the standardization of miRNA and isomiR annotation, enabling data sharing, reporting, comparative analyses and benchmarking, while promoting the development of common miRNA methods focusing on downstream steps of miRNA detection, annotation and quantification. AVAILABILITY AND IMPLEMENTATION: https://github.com/miRTop/mirGFF3/ and https://github.com/miRTop/mirtop. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
MicroARNs , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN , Transcriptoma
20.
RNA Biol ; 16(12): 1817-1825, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31512554

RESUMEN

Post-transcriptional non-template additions of nucleotides to 3'-ends of RNAs play important roles in the stability and function of RNA molecules. Although tRNA nucleotidyltransferase (CCA-adding enzyme) is known to add CCA trinucleotides to 3'-ends of tRNAs, whether other RNA species can be endogenous substrates of CCA-adding enzyme has not been widely explored yet. Herein, we used YAMAT-seq to identify non-tRNA substrates of CCA-adding enzyme. YAMAT-seq captures RNA species that form secondary structures with 4-nt protruding 3'-ends of the sequence 5'-NCCA-3', which is the hallmark structure of RNAs that are generated by CCA-adding enzyme. By executing YAMAT-seq for human breast cancer cells and mining the sequence data, we identified novel candidate substrates of CCA-adding enzyme. These included fourteen 'CCA-RNAs' that only contain CCA as non-genomic sequences, and eleven 'NCCA-RNAs' that contain CCA and other nucleotides as non-genomic sequences. All newly-identified (N)CCA-RNAs were derived from the mitochondrial genome and were localized in mitochondria. Knockdown of CCA-adding enzyme severely reduced the expression levels of (N)CCA-RNAs, suggesting that the CCA-adding enzyme-catalyzed CCA additions stabilize the expression of (N)CCA-RNAs. Furthermore, expression levels of (N)CCA-RNAs were severely reduced by various cellular treatments, including UV irradiation, amino acid starvation, inhibition of mitochondrial respiratory complexes, and inhibition of the cell cycle. These results revealed a novel CCA-mediated regulatory pathway for the expression of mitochondrial non-coding RNAs.


Asunto(s)
Mitocondrias/genética , Nucleotidiltransferasas/genética , ARN Mitocondrial/genética , ARN de Transferencia/genética , Emparejamiento Base , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Biología Computacional/métodos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Células Epiteliales , Genoma Mitocondrial , Células HEK293 , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células MCF-7 , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/metabolismo , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA