RESUMEN
Prostate-specific membrane antigen (PSMA)-targeted radioguided surgery (RGS) aims to optimize the peroperative detection and removal of PSMA-avid lymph node (LN) metastases (LNMs) and has been described in patients with recurrent prostate cancer (PCa). In newly diagnosed PCa patients undergoing pelvic LN dissections, PSMA RGS could guide the urologist toward PSMA-expressing LNMs as identified on preoperative 18F-PSMA PET/CT imaging. The objective was to evaluate the safety and feasibility of 111In-PSMA RGS in primary PCa patients with one or more suggestive LNs on preoperative 18F-PSMA PET/CT. Methods: This prospective, phase I/II study included 20 newly diagnosed PCa patients with at least 1 suggestive LN on preoperative 18F-PSMA PET/CT. PSMA RGS was performed 24 h after 111In-PSMA-I&T administration, and postoperative 18F-PSMA PET/CT was performed to verify successful removal of the suggestive lesions. The primary endpoint was determination of the safety and feasibility of 111In-PSMA RGS. Safety was assessed by monitoring adverse events. Feasibility was described as the possibility to peroperatively detect suggestive LNs as identified on preoperative imaging. Secondary outcomes included the accuracy of 111In-PSMA RGS compared with histopathology, tumor- and lesion-to-background ratios, and biochemical recurrence. Results: No tracer-related adverse events were reported. In 20 patients, 43 of 49 (88%) 18F-PSMA PET-suggestive lesions were successfully removed. 111In-PSMA RGS facilitated peroperative identification and resection of 29 of 49 (59%) RGS-target lesions, of which 28 (97%) contained LNMs. Another 14 of 49 (29%) resected LNs were not detected with 111In-PSMA RGS, of which 2 contained metastases. Conclusion: 111In-PSMA RGS is a safe and feasible procedure that allows peroperative detection of 18F-PSMA PET/CT-suggestive lesions in newly diagnosed PCa patients. The use of a radioactive PSMA tracer and a detection device (γ-probe) during surgery helps in identifying LNs that were suggestive of PCa metastases on the 18F-PSMA PET/CT before surgery and thus may improve the peroperative identification and removal of these LNs.
Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Metástasis Linfática/diagnóstico por imagen , Estudios Prospectivos , Próstata , Recurrencia Local de Neoplasia , Escisión del Ganglio Linfático , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugíaRESUMEN
OBJECTIVES: Two advanced imaging modalities used to detect lymph node (LN) metastases in prostate cancer patients are prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography and ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI). As these modalities use different targets, a subnodal comparison is needed to interpret both their correspondence and their differences. The aim of this explorative study was to compare ex vivo 111In-PSMA µSPECT images with high-resolution 7 T USPIO µMR images and histopathology of resected LN specimens from prostate cancer patients to assess the degree of correspondence at subnodal level. MATERIALS AND METHODS: Twenty primary prostate cancer patients who underwent pelvic LN dissection were included and received USPIO contrast and 111In-PSMA. A total of 41 LNs of interest (LNOIs) were selected for ex vivo imaging based on γ-probe detection or palpation. µSPECT and µMRI acquisition were performed immediately after resection. Overlay of µSPECT images on MR images was performed, and the level of correspondence (LoC) between µSPECT and µMR findings was assessed according to a 4-point Likert classification scheme. RESULTS: Forty-one LNOIs could be matched to an LN on ex vivo µMRI. Coregistration of µSPECT and USPIO-enhanced water-selective multigradient echo MR images was successful for all 41 LNOIs. Ninety percent of the lesions showed excellent correspondence regarding the presence of metastatic tissue and affected subnodal site (LoC 4; 37/41). In only 1 of 41 LNOIs, a small metastasis was misclassified by both techniques. Three LNOIs were classified as LoC 3 (7%) and 1 LNOI as LoC 2. All LoC 2 and LoC 3 lesions had PSMA-expressing metastases on final histopathology. CONCLUSIONS: Coregistration of µSPECT and USPIO-µMRI showed excellent subnodal correspondence in the majority (90%) of LNs. Ex vivo imaging may thus help localize small cancer deposits within resected LNs and could contribute to improved interpretation of in vivo imaging of LNs.
RESUMEN
One of the main challenges of PET imaging with 89Zr-labeled monoclonal antibodies (mAbs) remains the long blood circulation of the radiolabeled mAbs, leading to high background signals, decreasing image quality. To overcome this limitation, here we report the use of a bioorthogonal linker cleavage approach (click-to-release chemistry) to selectively liberate [89Zr]Zr-DFO from trans-cyclooctene-functionalized trastuzumab (TCO-Tmab) in blood, following the administration of a tetrazine compound (trigger) in BT-474 tumor-bearing mice. Methods: We created a series of TCO-DFO constructs and evaluated their performance in [89Zr]Zr-DFO release from Tmab in vitro using different trigger compounds. The in vivo behavior of the best performing [89Zr]Zr-TCO-Tmab was studied in healthy mice first to determine the optimal dose of the trigger. To find the optimal time for the trigger administration, the rate of [89Zr]Zr-TCO-Tmab internalization was studied in BT-474 cancer cells. Finally, the trigger was administered 6 h or 24 h after [89Zr]Zr-TCO-Tmab- administration in tumor-bearing mice to liberate the [89Zr]Zr-DFO fragment. PET scans were obtained of tumor-bearing mice that received the trigger 6 h post-[89Zr]Zr-TCO-Tmab administration. Results: The [89Zr]Zr-TCO-Tmab and trigger pair with the best in vivo properties exhibited 83% release in 50% mouse plasma. In tumor-bearing mice the tumor-blood ratios were markedly increased from 1.0 ± 0.4 to 2.3 ± 0.6 (p = 0.0057) and from 2.5 ± 0.7 to 6.6 ± 0.9 (p < 0.0001) when the trigger was administered at 6 h and 24 h post-mAb, respectively. Same day PET imaging clearly showed uptake in the tumor combined with a strongly reduced background due to the fast clearance of the released [89Zr]Zr-DFO-containing fragment from the circulation through the kidneys. Conclusions: This is the first demonstration of the use of trans-cyclooctene-tetrazine click-to-release chemistry to release a radioactive chelator from a mAb in mice to increase tumor-to-blood ratios. Our results suggest that click-cleavable radioimmunoimaging may allow for substantially shorter intervals in PET imaging with full mAbs, reducing radiation doses and potentially even enabling same day imaging.
Asunto(s)
Neoplasias , Radioinmunodetección , Animales , Ratones , Trastuzumab , Anticuerpos Monoclonales/química , Tomografía de Emisión de Positrones/métodos , Ciclooctanos/química , Línea Celular Tumoral , Circonio/químicaRESUMEN
PURPOSE: Incomplete resection of prostate cancer (PCa) results in increased risk of disease recurrence. Combined fluorescence-guided surgery with tumor-targeted photodynamic therapy (tPDT) may help to achieve complete tumor eradication. We developed a prostate-specific membrane antigen (PSMA) ligand consisting of a DOTA chelator for 111In labeling and a fluorophore/photosensitizer IRDye700DX (PSMA-N064). We evaluated the efficacy of PSMA-tPDT using PSMA-N064 in cell viability assays, a mouse xenograft model and in an ex vivo incubation study on fresh human PCa tissue. METHODS: In vitro, therapeutic efficacy of PSMA-N064 was evaluated using PSMA-positive LS174T cells and LS174T wild-type cells. In vivo, PSMA-N064-mediated tPDT was tested in immunodeficient BALB/c mice-bearing PSMA-positive LS174T xenografts. Tumor growth and survival were compared to control mice that received either NIR light or ligand injection only. Ex vivo tPDT efficacy was evaluated in excised fresh human PCa tissue incubated with PSMA-N064. RESULTS: In vitro, tPDT led to a PSMA-specific light- and ligand dose-dependent loss in cell viability. In vivo, tPDT-induced tumor cell apoptosis, delayed tumor growth, and significantly improved survival (p = 0.004) of the treated PSMA-positive tumor-bearing mice compared with the controls. In fresh ex vivo human PCa tissue, apoptosis was significantly increased in PSMA-tPDT-treated samples compared to non-treated control samples (p = 0.037). CONCLUSION: This study showed the feasibility of PSMA-N064-mediated tPDT in cell assays, a xenograft model and excised fresh human PCa tissue. This paves the way to investigate the impact of in vivo PSMA-tPDT on surgical outcome in PCa patients.
Asunto(s)
Fotoquimioterapia , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Medicina de Precisión , Ligandos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Glutamato Carboxipeptidasa II , Antígenos de Superficie , Fotoquimioterapia/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular TumoralAsunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/cirugía , Prostatectomía , PacientesRESUMEN
In recent years, clinical use of novel advanced imaging modalities in prostate cancer detection, staging, and therapy has intensified and is currently reforming clinical guidelines. In the future, advanced imaging technologies will continue to develop and become even more accurate, which will offer new opportunities for improving patient selection, surgical treatment, and radiotherapy, with the potential to guide prostate cancer therapy.
Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Próstata/patología , Selección de Paciente , Estadificación de NeoplasiasRESUMEN
In patients with colorectal peritoneal metastases scheduled for cytoreductive surgery, accurate preoperative estimation of tumor burden and subsequent intraoperative detection of all tumor deposits remains challenging. In this study (ClinicalTrials.gov NCT03699332) we describe the results of a phase I clinical trial evaluating [111In]In-DOTA-labetuzumab-IRDye800CW, a dual-labeled anti-carcinoembryonic antigen (anti-CEA) antibody conjugate that enables both preoperative imaging and intraoperative radioguidance and fluorescence imaging. Primary study outcomes are safety and feasibility of this multimodal imaging approach. Secondary outcomes are determination of the optimal dose, correlation between tracer uptake and histopathology and effects on clinical strategy. Administration of [111In]In-DOTA-labetuzumab-IRDye800CW is well-tolerated and enables sensitive pre- and intraoperative imaging in patients who receive 10 or 50 mg of the tracer. Preoperative imaging revealed previously undetected lymph node metastases in one patient, and intraoperative fluorescence imaging revealed four previously undetected metastases in two patients. Alteration of clinical strategy based on multimodal imaging occurred in three patients. Thus, multimodal image-guided surgery after administration of this dual-labeled tracer is a promising approach that may aid in decision making before and during cytoreductive surgical procedures.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Peritoneales , Anticuerpos Monoclonales , Antígeno Carcinoembrionario , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/cirugía , Procedimientos Quirúrgicos de Citorreducción/métodos , Humanos , Imagen Óptica/métodos , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/cirugíaRESUMEN
In this study, we compared the tumor-targeting properties, therapeutic efficacy, and tolerability of the humanized anti-CAIX antibody (hG250) labeled with either the α-emitter actinium-225 (225Ac) or the ß--emitter lutetium-177 (177Lu) in mice. BALB/c nude mice were grafted with human renal cell carcinoma SK-RC-52 cells and intravenously injected with 30 µg [225Ac] Ac-DOTA-hG250 (225Ac-hG250) or 30 µg [177Lu] Lu-DOTA-hG250 (177Lu-hG250), followed by ex vivo biodistribution studies. Therapeutic efficacy was evaluated in mice receiving 5, 15, and 25 kBq of 225Ac-hG250; 13 MBq of 177Lu-hG250; or no treatment. Tolerability was evaluated in non-tumor-bearing animals. High tumor uptake of both radioimmunoconjugates was observed and increased up to day 7 (212.8 ± 50.2 %IA/g vs. 101.0 ± 18.4 %IA/g for 225Ac-hG250 and 177Lu-hG250, respectively). Survival was significantly prolonged in mice treated with 15 kBq 225Ac-hG250, 25 kBq 225Ac-hG250, and 13 MBq 177Lu-hG250 compared to untreated control (p < 0.05). Non-tumor-bearing mice that received single-dose treatment with 15 or 25 kBq 225Ac-hG250 showed weight loss at the end of the experiment (day 126), and immunohistochemical analysis suggested radiation-induced nephrotoxicity. These results demonstrate the therapeutic potential of CAIX-targeted α-therapy in renal cell carcinoma. Future studies are required to find an optimal balance between therapeutic efficacy and toxicity.
RESUMEN
INTRODUCTION: The first generation ligands for prostate-specific membrane antigen (PSMA)-targeted radio- and fluorescence-guided surgery followed by adjuvant photodynamic therapy (PDT) have already shown the potential of this approach. Here, we developed three new photosensitizer-based dual-labeled PSMA ligands by crucial modification of existing PSMA ligand backbone structures (PSMA-1007/PSMA-617) for multimodal imaging and targeted PDT of PCa. METHODS: Various new PSMA ligands were synthesized using solid-phase chemistry and provided with a DOTA chelator for 111In labeling and the fluorophore/photosensitizer IRDye700DX. The performance of three new dual-labeled ligands was compared with a previously published first-generation ligand (PSMA-N064) and a control ligand with an incomplete PSMA-binding motif. PSMA specificity, affinity, and PDT efficacy of these ligands were determined in LS174T-PSMA cells and control LS174T wildtype cells. Tumor targeting properties were evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wildtype tumors using µSPECT/CT imaging, fluorescence imaging, and biodistribution studies after dissection. RESULTS: In order to synthesize the new dual-labeled ligands, we modified the PSMA peptide linker by substitution of a glutamic acid into a lysine residue, providing a handle for conjugation of multiple functional moieties. Ligand optimization showed that the new backbone structure leads to high-affinity PSMA ligands (all IC50 < 50 nM). Moreover, ligand-mediated PDT led to a PSMA-specific decrease in cell viability in vitro (P < 0.001). Linker modification significantly improved tumor targeting compared to the previously developed PSMA-N064 ligand (≥ 20 ± 3%ID/g vs 14 ± 2%ID/g, P < 0.01) and enabled specific visualization of PMSA-positive tumors using both radionuclide and fluorescence imaging in mice. CONCLUSION: The new high-affinity dual-labeled PSMA-targeting ligands with optimized backbone compositions showed increased tumor targeting and enabled multimodal image-guided PCa surgery combined with targeted photodynamic therapy.
Asunto(s)
Fotoquimioterapia , Neoplasias de la Próstata , Animales , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Ligandos , Masculino , Ratones , Ratones Desnudos , Imagen Multimodal , Fármacos Fotosensibilizantes/uso terapéutico , Medicina de Precisión , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/terapia , Distribución TisularRESUMEN
Strain-promoted azide-alkyne cycloaddition (SPAAC) is a straightforward and multipurpose conjugation strategy. The use of SPAAC to link different functional elements to prostate-specific membrane antigen (PSMA) ligands would facilitate the development of a modular platform for PSMA-targeted imaging and therapy of prostate cancer (PCa). As a first proof of concept for the SPAAC chemistry platform, we synthesized and characterized four dual-labeled PSMA ligands for intraoperative radiodetection and fluorescence imaging of PCa. Ligands were synthesized using solid-phase chemistry and contained a chelator for 111In or 99mTc labeling. The fluorophore IRDye800CW was conjugated using SPAAC chemistry or conventional N-hydroxysuccinimide (NHS)-ester coupling. Logâ¯D values were measured and PSMA specificity of these ligands was determined in LS174T-PSMA cells. Tumor targeting was evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wild-type tumors using µSPECT/CT imaging, fluorescence imaging, and biodistribution studies. SPAAC chemistry increased the lipophilicity of the ligands (logâ¯D range: -2.4 to -4.4). In vivo, SPAAC chemistry ligands showed high and specific accumulation in s.c. LS174T-PSMA tumors up to 24 h after injection, enabling clear visualization using µSPECT/CT and fluorescence imaging. Overall, no significant differences between the SPAAC chemistry ligands and their NHS-based counterparts were found (2 h p.i., p > 0.05), while 111In-labeled ligands outperformed the 99mTc ligands. Here, we demonstrate that our newly developed SPAAC-based PSMA ligands show high PSMA-specific tumor targeting. The use of click chemistry in PSMA ligand development opens up the opportunity for fast, efficient, and versatile conjugations of multiple imaging moieties and/or drugs.
Asunto(s)
AzidasRESUMEN
OBJECTIVE: Activated synovial fibroblasts are key effector cells in RA. Selectively depleting these based upon their expression of fibroblast activation protein (FAP) is an attractive therapeutic approach. Here we introduce FAP imaging of inflamed joints using 68Ga-FAPI-04 in a RA patient, and aim to assess feasibility of anti-FAP targeted photodynamic therapy (FAP-tPDT) ex vivo using 28H1-IRDye700DX on RA synovial explants. METHODS: Remnant synovial tissue from RA patients was processed into 6 mm biopsies and, from several patients, into primary fibroblast cell cultures. Both were treated using FAP-tPDT. Cell viability was measured in fibroblast cultures and biopsies were evaluated for histological markers of cell damage. Selectivity of the effect of FAP-tPDT was assessed using flow cytometry on primary fibroblasts and co-cultured macrophages. Additionally, one RA patient intravenously received 68Ga-FAPI-04 and was scanned using PET/CT imaging. RESULTS: In the RA patient, FAPI-04 PET imaging showed high accumulation of the tracer in arthritic joints with very low background signal. In vitro, FAP-tPDT induced cell death in primary RA synovial fibroblasts in a light dose-dependent manner. An upregulation of cell damage markers was observed in the synovial biopsies after FAP-tPDT. No significant effects of FAP-tPDT were noted on macrophages after FAP-tPDT of neighbouring fibroblasts. CONCLUSION: In this study the feasibility of selective FAP-tPDT in synovium of rheumatoid arthritis patients ex vivo is demonstrated. Furthermore, this study provides the first indication that FAP-targeted PET/CT can be used to image arthritic joints, an important step towards application of FAP-tPDT as a targeted locoregional therapy for RA.
Asunto(s)
Artritis Reumatoide , Fotoquimioterapia , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Membrana Sinovial/metabolismoRESUMEN
Macrophages play a crucial role in the initiation and progression of rheumatoid arthritis (RA). Liposomes can be used to deliver therapeutics to macrophages by exploiting their phagocytic ability. However, since macrophages serve as the immune system's first responders, it is inadvisable to systemically deplete these cells. By loading the liposomes with the photosensitizer IRDye700DX, we have developed and tested a novel way to perform photodynamic therapy (PDT) on macrophages in inflamed joints. PEGylated liposomes were created using the film method and post-inserted with micelles containing IRDye700DX. For radiolabeling, a chelator was also incorporated. RAW 264.7 cells were incubated with liposomes with or without IRDye700DX and exposed to 689 nm light. Viability was determined using CellTiterGlo. Subsequently, biodistribution and PDT studies were performed on mice with collagen-induced arthritis (CIA). PDT using IRDye700DX-loaded liposomes efficiently induced cell death in vitro, whilst no cell death was observed using the control liposomes. Biodistribution of the two compounds in CIA mice was comparable with excellent correlation of the uptake with macroscopic and microscopic arthritis scores. Treatment with 700DX-loaded liposomes significantly delayed arthritis development. Here we have shown the proof-of-principle of performing PDT in arthritic joints using IRDye700DX-loaded liposomes, allowing locoregional treatment of arthritis.
RESUMEN
INTRODUCTION: Postoperative cognitive dysfunction occurs frequently after coronary artery bypass grafting (CABG). The underlying mechanisms remain poorly understood, but neuroinflammation might play a pivotal role. We hypothesise that systemic inflammation induced by the surgical trauma could activate the innate immune (glial) cells of the brain. This could lead to an exaggerated neuroinflammatory cascade, resulting in neuronal dysfunction and loss of neuronal cells. Therefore, the aims of this study are to assess neuroinflammation in vivo presurgery and postsurgery in patients undergoing major cardiac surgery and investigate whether there is a relationship of neuroinflammation to cognitive outcomes, changes to brain structure and function, and systemic inflammation. METHODS AND ANALYSIS: The FOCUS study is a prospective, single-centre observational study, including 30 patients undergoing elective on-pump CABG. Translocator protein (TSPO) positron emission tomography neuroimaging will be performed preoperatively and postoperatively using the second generation tracer 18F-DPA-714 to assess the neuroinflammatory response. In addition, a comprehensive cerebral MRI will be performed presurgery and postsurgery, in order to discover newly developed brain and vascular wall lesions. Up to 6 months postoperatively, serial extensive neurocognitive assessments will be performed and blood will be obtained to quantify systemic inflammatory responses and peripheral immune cell activation. ETHICS AND DISSEMINATION: Patients do not benefit directly from engaging in the study, but imaging neuroinflammation is considered safe and no side effects are expected. The study protocol obtained ethical approval by the Medical Research Ethics Committee region Arnhem-Nijmegen. This work will be published in peer-reviewed international medical journals and presented at medical conferences. TRIAL REGISTRATION NUMBER: NCT04520802.
Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Disfunción Cognitiva , Complicaciones Cognitivas Postoperatorias , Disfunción Cognitiva/etiología , Humanos , Neuroimagen , Estudios Observacionales como Asunto , Estudios Prospectivos , Receptores de GABARESUMEN
Despite increasing evidence that immune training within the brain may affect the clinical course of neuropsychiatric diseases, data on cerebral immune tolerance are scarce. This study in healthy volunteers examined the trajectory of the immune response systemically and within the brain following repeated lipopolysaccharide (LPS) challenges. Five young males underwent experimental human endotoxemia (intravenous administration of 2 ng/kg LPS) twice with a 7-day interval. The systemic immune response was assessed by measuring plasma cytokine levels. Four positron emission tomography (PET) examinations, using the translocator protein (TSPO) ligand 18F-DPA-714, were performed in each participant, to assess brain immune cell activation prior to and 5 hours after both LPS challenges. The first LPS challenge caused a profound systemic inflammatory response and resulted in a 53% [95%CI 36-71%] increase in global cerebral 18F-DPA-714 binding (p < 0.0001). Six days after the first challenge, 18F-DPA-714 binding had returned to baseline levels (p = 0.399). While the second LPS challenge resulted in a less pronounced systemic inflammatory response (i.e. 77 ± 14% decrease in IL-6 compared to the first challenge), cerebral inflammation was not attenuated, but decreased below baseline, illustrated by a diffuse reduction of cerebral 18F-DPA-714 binding (-38% [95%CI -47 to -28%], p < 0.0001). Our findings constitute evidence for in vivo immunological reprogramming in the brain following a second inflammatory insult in healthy volunteers, which could represent a neuroprotective mechanism. These results pave the way for further studies on immunotolerance in the brain in patients with systemic inflammation-induced cerebral dysfunction.
Asunto(s)
Encéfalo/inmunología , Inflamación/inmunología , Neuroimagen , Encéfalo/diagnóstico por imagen , Humanos , Inmunidad , Masculino , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismoRESUMEN
PURPOSE: In this phase I study, we evaluated the safety, biodistribution and dosimetry of [89Zr]Zr-DFO-girentuximab (89Zr-girentuximab) PET/CT imaging in patients with suspicion of clear cell renal cell carcinoma (ccRCC). METHODS: Ten eligible patients received an intravenous administration of 37 MBq (± 10%) of 89Zr-girentuximab at mass doses of 5 mg or 10 mg. Safety was evaluated according to the NCI CTCAE (version 4.03). Biodistribution and normal organ dosimetry was performed based on PET/CT images acquired at 0.5, 4, 24, 72 and 168 h post-administration. Additionally, tumour dosimetry was performed in patients with confirmed ccRCC and visible tumour uptake on PET/CT imaging. RESULTS: 89Zr-girentuximab was administered in ten patients as per protocol. No treatment-related adverse events ≥ grade 3 were reported. 89Zr-girentuximab imaging allowed successful differentiation between ccRCC and non-ccRCC lesions in all patients, as confirmed with histological data. Dosimetry analysis using OLINDA/EXM 2.1 showed that the organs receiving the highest doses (mean ± SD) were the liver (1.86 ± 0.40 mGy/MBq), the kidneys (1.50 ± 0.22 mGy/MBq) and the heart wall (1.45 ± 0.19 mGy/MBq), with a mean whole body effective dose of 0.57 ± 0.08 mSv/MBq. Tumour dosimetry was performed in the 6 patients with histologically confirmed ccRCC resulting in a median tumour-absorbed dose of 4.03 mGy/MBq (range 1.90-11.6 mGy/MBq). CONCLUSIONS: This study demonstrates that 89Zr-girentuximab is safe and well tolerated for the administered activities and mass doses and allows quantitative assessment of 89Zr-girentuximab PET/CT imaging in patients with suspicion of ccRCC. TRIAL REGISTRATION: NCT03556046-14th of June, 2018.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Anticuerpos Monoclonales , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/radioterapia , Humanos , Neoplasias Renales/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiometría , Distribución TisularRESUMEN
Variable domains of heavy chain only antibodies (VHHs) are valuable agents for application in tumor theranostics upon conjugation to both a diagnostic probe and a therapeutic compound. Here, we optimized site-specific conjugation of the chelator DTPA and the photosensitizer IRDye700DX to anti-epidermal growth factor receptor (EGFR) VHH 7D12, for applications in nuclear imaging and photodynamic therapy. 7D12 was site-specifically equipped with bimodal probe DTPA-tetrazine-IRDye700DX using the dichlorotetrazine conjugation platform. Binding, internalization and light-induced toxicity of DTPA-IRDye700DX-7D12 were determined using EGFR-overexpressing A431 cells. Finally, ex vivo biodistribution of DTPA-IRDye700DX-7D12 in A431 tumor-bearing mice was performed, and tumor homing was visualized with SPECT and fluorescence imaging. DTPA-IRDye700DX-7D12 was retrieved with a protein recovery of 43%, and a degree of labeling of 0.56. Spectral properties of the IRDye700DX were retained upon conjugation. 111In-labeled DTPA-IRDye700DX-7D12 bound specifically to A431 cells, and they were effectively killed upon illumination. DTPA-IRDye700DX-7D12 homed to A431 xenografts in vivo, and this could be visualized with both SPECT and fluorescence imaging. In conclusion, the dichlorotetrazine platform offers a feasible method for site-specific dual-labeling of VHH 7D12, retaining binding affinity and therapeutic efficacy. The flexibility of the described approach makes it easy to vary the nature of the probes for other combinations of diagnostic and therapeutic compounds.
RESUMEN
Accurate assessment of lymph node (LN) metastases in prostate cancer (PCa) patients is critical for prognosis and patient management. Both prostate-specific membrane antigen (PSMA) PET/CT and ferumoxtran-10 nanoparticle-enhanced MRI (nano-MRI) are imaging modalities with high potential to identify LN metastases in PCa patients. The aim of this study was to compare the results of these imaging technologies in terms of characteristics and anatomic localization of suspicious LNs in order to assess the feasibility of their complementary use for imaging in PCa patients. Methods: In total, 45 patients with either primary PCa (n = 8) or recurrence (n = 36) were included in this retrospective study. All patients underwent both 68Ga-PSMA PET/CT and nano-MRI between October 2015 and July 2017 within 3 wk. Both scans were performed at the same institution according to local clinical protocols. All scans were analyzed independently by experienced nuclear medicine physicians and radiologists. The size, anatomic location, and level of suspicion were determined for all visible LNs. Subsequently, the findings from 68Ga-PSMA PET/CT and nano-MRI were compared without respect to a reference standard. Results: In total, 179 suspicious LNs were identified. Significantly more suspicious LNs per patient were detected by nano-MRI (P < 0.001): 160 were identified in 33 patients by nano-MRI, versus 71 in 25 patients by 68Ga-PSMA PET/CT. Of all suspicious LNs, 108 were identified only by nano-MRI (60%), 19 (11%) only by 68Ga-PSMA PET/CT, and 52 (29%) by both methods. The mean size of the suspicious LNs as identified by nano-MRI was significantly smaller (5.3 mm) than that by 68Ga-PSMA PET/CT (6.0 mm; P = 0.006). The median level of suspicion did not differ significantly. Both modalities identified suspicious LNs in all anatomic regions of the pelvis. Conclusion: Both modalities identified suspicious LNs that were missed by the other. Both modalities identified suspicious LNs in all anatomic regions of the pelvis; however, nano-MRI appeared to be superior in detecting smaller suspicious LNs. These findings suggest that nano-MRI has a potential role as a complement to PSMA PET/CT. However, since the clinical implications of the different results are not well established yet, further investigation of this complementary use is encouraged.
Asunto(s)
Neoplasias de la Próstata , Anciano , Isótopos de Galio , Radioisótopos de Galio , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios RetrospectivosRESUMEN
Incomplete resection of prostate cancer (PCa) occurs in 15%-50% of PCa patients. Disease recurrence negatively impacts oncological outcome. The use of radio-, fluorescent-, or photosensitizer-labeled ligands to target the prostate-specific membrane antigen (PSMA) has become a well-established method for the detection and treatment of PCa. Methods: Here, we developed and characterized multimodal [111In]In-DOTA(GA)-IRDye700DX-PSMA ligands, varying in their molecular composition, for use in intraoperative radiodetection, fluorescence imaging and targeted photodynamic therapy of PCa lesions. PSMA-specificity of these ligands was determined in xenograft tumor models and on fresh human PCa biopsies. Results: Ligand structure optimization showed that addition of the photosensitizer (IRDye700DX) and additional negative charges significantly increased ligand uptake in PSMA-expressing tumors. Moreover, an ex vivo incubation study on human tumor biopsies confirmed the PSMA-specificity of these ligands on human samples, bridging the gap to the clinical situation. Conclusion: We developed a novel PSMA-targeting ligand, optimized for multimodal image-guided PCa surgery combined with targeted photodynamic therapy.
Asunto(s)
Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Fármacos Fotosensibilizantes/química , Prostatectomía/métodos , Neoplasias de la Próstata/diagnóstico , Radiofármacos/química , Cirugía Asistida por Computador/métodos , Animales , Apoptosis , Proliferación Celular , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/cirugía , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE: Intraoperative image guidance may aid in clinical decision-making during surgical treatment of colorectal cancer. We developed the dual-labeled carcinoembryonic antigen-targeting tracer, [111In]In-DTPA-SGM-101, for pre- and intraoperative imaging of colorectal cancer. Subsequently, we investigated the tracer in preclinical biodistribution and multimodal image-guided surgery studies, and assessed the clinical feasibility on patient-derived colorectal cancer samples, paving the way for rapid clinical translation. EXPERIMENTAL DESIGN: SGM-101 was conjugated with p-isothiocyanatobenzyl-diethylenetriaminepentaacetic acid (DTPA) and labeled with Indium-111 (111In). The biodistribution of 3, 10, 30, and 100 µg [111In]In-DTPA-SGM-101 was assessed in a dose escalation study in BALB/c nude mice with subcutaneous LS174T human colonic tumors, followed by a study to determine the optimal timepoint for imaging. Mice with intraperitoneal LS174T tumors underwent micro-SPECT/CT imaging and fluorescence image-guided resection. In a final translational experiment, we incubated freshly resected human tumor specimens with the tracer and assessed the tumor-to-adjacent tissue ratio of both signals. RESULTS: The optimal protein dose of [111In]In-DTPA-SGM-101 was 30 µg (tumor-to-blood ratio, 5.8 ± 1.1) and the optimal timepoint for imaging was 72 hours after injection (tumor-to-blood ratio, 5.1 ± 1.0). In mice with intraperitoneal tumors, [111In]In-DTPA-SGM-101 enabled preoperative SPECT/CT imaging and fluorescence image-guided resection. After incubation of human tumor samples, overall fluorescence and radiosignal intensities were higher in tumor areas compared with adjacent nontumor tissue (P < 0.001). CONCLUSIONS: [111In]In-DTPA-SGM-101 showed specific accumulation in colorectal tumors, and enabled micro-SPECT/CT imaging and fluorescence image-guided tumor resection. Thus, [111In]In-DTPA-SGM-101 could be a valuable tool for preoperative SPECT/CT imaging and intraoperative radio-guided localization and fluorescence image-guided resection of colorectal cancer.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno Carcinoembrionario/aislamiento & purificación , Neoplasias Colorrectales/cirugía , Cirugía Asistida por Computador/métodos , Animales , Anticuerpos Monoclonales/química , Antígeno Carcinoembrionario/genética , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/aislamiento & purificación , Xenoinjertos , Humanos , Radioisótopos de Indio/farmacología , Ratones , Imagen Óptica/métodos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Distribución Tisular/efectos de la radiaciónRESUMEN
OBJECTIVE: In RA, synovial fibroblasts become activated. These cells express fibroblast activation protein (FAP) and contribute to the pathogenesis by producing cytokines, chemokines and proteases. Selective depletion in inflamed joints could therefore constitute a viable treatment option. To this end, we developed and tested a new therapeutic strategy based on the selective destruction of FAP-positive cells by targeted photodynamic therapy (tPDT) using the anti-FAP antibody 28H1 coupled to the photosensitizer IRDye700DX. METHODS: After conjugation of IRDye700DX to 28H1, the immunoreactive binding and specificity of the conjugate were determined. Subsequently, tPDT efficiency was established in vitro using a 3T3 cell line stably transfected with FAP. The biodistribution of [111In]In-DTPA-28H1 with and without IRDye700DX was assessed in healthy C57BL/6N mice and in C57BL/6N mice with antigen-induced arthritis. The potential of FAP-tPDT to induce targeted damage was determined ex vivo by treating knee joints from C57BL/6N mice with antigen-induced arthritis 24 h after injection of the conjugate. Finally, the effect of FAP-tPDT on arthritis development was determined in mice with collagen-induced arthritis. RESULTS: 28H1-700DX was able to efficiently induce FAP-specific cell death in vitro. Accumulation of the anti-FAP antibody in arthritic knee joints was not affected by conjugation with the photosensitizer. Arthritis development was moderately delayed in mice with collagen-induced arthritis after FAP-tPDT. CONCLUSION: Here we demonstrate the feasibility of tPDT to selectively target and kill FAP-positive fibroblasts in vitro and modulate arthritis in vivo using a mouse model of RA. This approach may have therapeutic potential in (refractory) arthritis.