Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 8(3): 214-232, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37814006

RESUMEN

Developing therapeutic antibodies is laborious and costly. Here we report a method for antibody discovery that leverages the Illumina HiSeq platform to, within 3 days, screen in the order of 108 antibody-antigen interactions. The method, which we named 'deep screening', involves the clustering and sequencing of antibody libraries, the conversion of the DNA clusters into complementary RNA clusters covalently linked to the instrument's flow-cell surface on the same location, the in situ translation of the clusters into antibodies tethered via ribosome display, and their screening via fluorescently labelled antigens. By using deep screening, we discovered low-nanomolar nanobodies to a model antigen using 4 × 106 unique variants from yeast-display-enriched libraries, and high-picomolar single-chain antibody fragment leads for human interleukin-7 directly from unselected synthetic repertoires. We also leveraged deep screening of a library of 2.4 × 105 sequences of the third complementarity-determining region of the heavy chain of an anti-human epidermal growth factor receptor 2 (HER2) antibody as input for a large language model that generated new single-chain antibody fragment sequences with higher affinity for HER2 than those in the original library.


Asunto(s)
Anticuerpos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anticuerpos/genética , Anticuerpos/metabolismo , Biblioteca de Genes , Fragmentos de Inmunoglobulinas , Ribosomas/genética , Ribosomas/metabolismo
2.
bioRxiv ; 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37503279

RESUMEN

RNA is a remarkably versatile molecule that has been engineered for applications in therapeutics, diagnostics, and in vivo information-processing systems. However, the complex relationship between the sequence and structural properties of an RNA molecule and its ability to perform specific functions often necessitates extensive experimental screening of candidate sequences. Here we present a generalized neural network architecture that utilizes the sequence and structure of RNA molecules (SANDSTORM) to inform functional predictions. We demonstrate that this approach achieves state-of-the-art performance across several distinct RNA prediction tasks, while learning interpretable abstractions of RNA secondary structure. We paired these predictive models with generative adversarial RNA design networks (GARDN), allowing the generative modelling of novel mRNA 5' untranslated regions and toehold switch riboregulators exhibiting a predetermined fitness. This approach enabled the design of novel toehold switches with a 43-fold increase in experimentally characterized dynamic range compared to those designed using classic thermodynamic algorithms. SANDSTORM and GARDN thus represent powerful new predictive and generative tools for the development of diagnostic and therapeutic RNA molecules with improved function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA