Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 165: 107932, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31911104

RESUMEN

The intravenous anaesthetic ketamine, has been demonstrated to inhibit nicotinic acetylcholine receptor (nAChR)-mediated currents in dissociated rat intracardiac ganglion (ICG) neurons (Weber et al., 2005). This effect would be predicted to depress synaptic transmission in the ICG and would account for the inhibitory action of ketamine on vagal transmission to the heart (Inoue and König, 1988). This investigation was designed to examine the activity of ketamine on (i) postsynaptic responses to vagal nerve stimulation, (ii) the membrane potential, and (iii) membrane current responses evoked by exogenous application of ACh and nicotine in ICG neurons in situ. Intracellular recordings were made using sharp intracellular microelectrodes in a whole mount ICG preparation. Preganglionic nerve stimulation and recordings in current- and voltage-clamp modes were used to assess the action of ketamine on ganglionic transmission and nAChR-mediated responses. Ketamine attenuated the postsynaptic responses evoked by nerve stimulation. This reduction was significant at clinically relevant concentrations at high frequencies. The excitatory membrane potential and current responses to focal application of ACh and nicotine were inhibited in a concentration-dependent manner by ketamine. In contrast, ketamine had no effect on either the directly-evoked action potential or excitatory responses evoked by focal application of γ-aminobutyric acid (GABA). Taken together, ketamine inhibits synaptic transmission and nicotine- and ACh-evoked currents in adult rat ICG. Ketamine inhibition of synaptic transmission and nAChR-mediated responses in the ICG contributes significantly to its attenuation of the bradycardia observed in response to vagal stimulation in the mammalian heart.


Asunto(s)
Anestésicos Intravenosos/administración & dosificación , Ganglios Parasimpáticos/efectos de los fármacos , Corazón/fisiología , Ketamina/administración & dosificación , Neuronas/efectos de los fármacos , Receptores Nicotínicos/fisiología , Transmisión Sináptica/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Animales , Femenino , Ganglios Parasimpáticos/fisiología , Corazón/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Neuronas/fisiología , Agonistas Nicotínicos/administración & dosificación , Ratas Wistar , Receptores Nicotínicos/administración & dosificación , Nervio Vago/fisiología , Estimulación del Nervio Vago
2.
Front Neurol ; 1: 130, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21173895

RESUMEN

Interactions between nicotinic excitatory postsynaptic potentials (EPSPs) critically determine whether paravertebral sympathetic ganglia behave as simple synaptic relays or as integrative centers that amplify preganglionic activity. Synaptic connectivity in this system is characterized by an n + 1 pattern of convergence, where each ganglion cell receives one very strong primary input and a variable number (n) of weak secondary inputs that are subthreshold in strength. To test whether pairs of secondary nicotinic EPSPs can summate to fire action potentials (APs) and thus mediate ganglionic gain in the rat superior cervical ganglion, we recorded intracellularly at 34°C and used graded presynaptic stimulation to isolate individual secondary synapses. Weak EPSPs in 40 of 53 neurons had amplitudes of 0.5-7 mV (mean 3.5 ± 0.3 mV). EPSPs evoked by paired pulse stimulation were either depressing (n = 10), facilitating (n = 9), or borderline (n = 10). In 15 of 29 cells, pairs of weak secondary EPSPs initiated spikes when elicited within a temporal window <20 ms, irrespective of EPSP amplitude or paired pulse response type. In six other neurons, we observed novel secondary EPSPs that were strong enough to straddle spike threshold without summation. At stimulus rates <1 Hz straddling EPSPs appeared suprathreshold in strength. However, their limited ability to drive firing could be blocked by the afterhyperpolarization following an AP. When viewed in a computational context, these findings support the concept that weak and straddling secondary nicotinic synapses enable mammalian sympathetic ganglia to behave as use-dependent amplifiers of preganglionic activity.

3.
Am J Physiol Regul Integr Comp Physiol ; 299(1): R42-54, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20445155

RESUMEN

We have investigated the effects of the reactive oxygen species (ROS) donors hydrogen peroxide (H(2)O(2)) and tert-butyl hydroperoxide (t-BHP) on the intrinsic electrophysiological characteristics: ganglionic transmission and resting [Ca(2+)](i) in neonate and adult rat intracardiac ganglion (ICG) neurons. Intracellular recordings were made using sharp microelectrodes filled with either 0.5 M KCl or Oregon Green 488 BAPTA-1, allowing recording of electrical properties and measurement of [Ca(2+)](i). H(2)O(2) and t-BHP both hyperpolarized the resting membrane potential and reduced membrane resistance. In adult ICG neurons, the hyperpolarizing action of H(2)O(2) was reversed fully by Ba(2+) and partially by tetraethylammonium, muscarine, and linopirdine. H(2)O(2) and t-BHP reduced the action potential afterhyperpolarization (AHP) amplitude but had no impact on either overshoot or AHP duration. ROS donors evoked an increase in discharge adaptation to long depolarizing current pulses. H(2)O(2) blocked ganglionic transmission in most ICG neurons but did not alter nicotine-evoked depolarizations. By contrast, t-BHP had no significant action on ganglionic transmission. H(2)O(2) and t-BHP increased resting intracellular Ca(2+) levels to 1.6 ( +/- 0.6, n = 11, P < 0.01) and 1.6 ( +/- 0.3, n = 8, P < 0.001), respectively, of control value (1.0, approximately 60 nM). The ROS scavenger catalase prevented the actions of H(2)O(2), and this protection extended beyond the period of application. Superoxide dismutase partially shielded against the action of H(2)O(2), but this was limited to the period of application. These data demonstrate that ROS decreases the excitability and ganglionic transmission of ICG neurons, attenuating parasympathetic control of the heart.


Asunto(s)
Calcio/fisiología , Fenómenos Electrofisiológicos , Neuronas/fisiología , Especies Reactivas de Oxígeno/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Compuestos de Anilina , Animales , Animales Recién Nacidos , Femenino , Fluoresceínas , Ganglios , Corazón , Peróxido de Hidrógeno/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Microelectrodos , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , terc-Butilhidroperóxido/farmacología
4.
Exp Physiol ; 94(2): 201-12, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18978036

RESUMEN

We have investigated the action of two elements of acute ischaemia, high potassium and aglycaemia, on the electrophysiological properties and ganglionic transmission of adult rat intracardiac ganglion (ICG) neurones. We used a whole-mount ganglion preparation of the right atrial ganglion plexus and sharp microelectrode recording techniques. Increasing extracellular K(+) from its normal value of 4.7 mm to 10 mm decreased membrane potential and action potential after-hyperpolarization amplitude but otherwise had no effect on postganglionic membrane properties. It did, however, reduce the ability of synaptically evoked action potentials to follow high-frequency (100 Hz) repetitive stimulation. A further increase in K(+) changed both the passive and the active membrane properties of the postganglionic neurone: time constant, membrane resistance and action potential overshoot were all decreased in high K(+) (20 mm). The ICG neurones display a predominantly phasic discharge in response to prolonged depolarizing current pulses. High K(+) had no impact on this behaviour but reduced the time-dependent rectification response to hyperpolarizing currents. At 20 mm, K(+) practically blocked ganglionic transmission in most neurones at all frequencies tested. Aglycaemia, nominally glucose-free physiological saline solution (PSS), increased the time constant and membrane resistance of ICG neurones but otherwise had no action on their passive or active properties or ganglionic transmission. However, the combination of aglycaemia and 20 mm K(+) displayed an improvement in passive properties and ganglionic transmission when compared with 20 mm K(+) PSS. These data indicate that the presynaptic terminal is the primary target of high extracellular potassium and that aglycaemia may have protective actions against this challenge.


Asunto(s)
Glucemia/fisiología , Fenómenos Electrofisiológicos/fisiología , Ganglios/fisiología , Corazón/inervación , Potasio/farmacología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Isquemia Miocárdica/fisiopatología , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/efectos de los fármacos
5.
J Neurophysiol ; 95(6): 3543-52, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16611840

RESUMEN

We charted postnatal changes in the intrinsic electrophysiological properties and synaptic responses of rat intrinsic cardiac ganglion (ICG) neurons. We developed a whole-mount ganglion preparation of the excised right atrial ganglion plexus. Using intracellular recordings and nerve stimulation we tested the hypothesis that substantial transformations in the intrinsic electrical characteristics and synaptic transmission accompany postnatal development. Membrane potential (E(m)) did not change but time constant (tau) and cell capacitance increased with postnatal development. Accordingly, input resistance (R(in)) decreased but specific membrane resistance (R(m)) increased postnatally. Comparison of the somatic active membrane properties revealed significant changes in electrical phenotype. All neonatal neurons had somatic action potentials (APs) with small overshoots and small afterhyperpolarizations (AHPs). Adult neurons had somatic APs with large overshoots and large AHP amplitudes. The range of AHP duration was larger in adults than in neonates. The AP characteristics of juvenile neurons resembled those of adults, with the exception of AHP duration, which fell midway between neonate and adult values. Phasic, multiply adapting, and tonic evoked discharge activities were recorded from ICG neurons. Most neurons displayed phasic discharge at each developmental stage. All neurons received excitatory synaptic inputs from the vagus or interganglionic nerve trunk(s), the strength of which did not change significantly with postnatal age. The changes in the electrophysiological properties of the postganglionic neuron suggest that increased complexity of parasympathetic regulation of cardiac function accompanies postnatal development.


Asunto(s)
Potenciales de Acción/fisiología , Envejecimiento/fisiología , Función Atrial/fisiología , Ganglios Parasimpáticos/fisiología , Potenciales de la Membrana/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Electrofisiología/métodos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...