Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 33(10): 1189-1195, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32748677

RESUMEN

The Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae, respectively. Resistance is triggered by pathogen-delivered transcription activator-like effectors (TALEs) independent of their ability to activate transcription and is suppressed by truncated variants called truncTALEs, common among Asian strains. By transformation of the susceptible variety Nipponbare, we show that one of 14 nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zinc finger BED domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-mediated response is more similar to those mediated by two other NLR resistance genes than it is to the response associated with TALE-specific transcriptional activation of the executor resistance gene Xa23 and that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. In Nicotiana benthamiana leaves, fluorescently tagged Xo1 protein, like TALEs and truncTALEs, localized to the nucleus. And endogenous Xo1 specifically coimmunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. These observations suggest that suppression of Xo1-function by truncTALEs occurs through direct or indirect physical interaction. They further suggest that effector coimmunoprecipitation may be effective for identifying or characterizing other resistance genes.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Xanthomonas/patogenicidad , Clonación Molecular , Humanos , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología
2.
Proc Natl Acad Sci U S A ; 117(29): 17122-17129, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32632014

RESUMEN

Symbioses of bacteria with fungi have only recently been described and are poorly understood. In the symbiosis of Mycetohabitans (formerly Burkholderia) rhizoxinica with the fungus Rhizopus microsporus, bacterial type III (T3) secretion is known to be essential. Proteins resembling T3-secreted transcription activator-like (TAL) effectors of plant pathogenic bacteria are encoded in the three sequenced Mycetohabitans spp. genomes. TAL effectors nuclear-localize in plants, where they bind and activate genes important in disease. The Burkholderia TAL-like (Btl) proteins bind DNA but lack the N- and C-terminal regions, in which TAL effectors harbor their T3 and nuclear localization signals, and activation domain. We characterized a Btl protein, Btl19-13, and found that, despite the structural differences, it can be T3-secreted and can nuclear-localize. A btl19-13 gene knockout did not prevent the bacterium from infecting the fungus, but the fungus became less tolerant to cell membrane stress. Btl19-13 did not alter transcription in a plant-based reporter assay, but 15 R. microsporus genes were differentially expressed in comparisons both of the fungus infected with the wild-type bacterium vs. the mutant and with the mutant vs. a complemented strain. Southern blotting revealed btl genes in 14 diverse Mycetohabitans isolates. However, banding patterns and available sequences suggest variation, and the btl19-13 phenotype could not be rescued by a btl gene from a different strain. Our findings support the conclusion that Btl proteins are effectors that act on host DNA and play important but varied or possibly host genotype-specific roles in the M. rhizoxinica-R. microsporus symbiosis.


Asunto(s)
Burkholderia , Rhizopus , Simbiosis/genética , Efectores Tipo Activadores de la Transcripción , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/fisiología , Regulación Fúngica de la Expresión Génica/genética , Rhizopus/genética , Rhizopus/metabolismo , Estrés Fisiológico/genética , Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/metabolismo , Transcriptoma/genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
3.
Nucleic Acids Res ; 45(11): 6960-6970, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28460076

RESUMEN

Transcription activator-like effectors (TALEs) recognize their DNA targets via tandem repeats, each specifying a single nucleotide base in a one-to-one sequential arrangement. Due to this modularity and their ability to bind long DNA sequences with high specificity, TALEs have been used in many applications. Contributions of individual repeat-nucleotide associations to affinity and specificity have been characterized. Here, using in vitro binding assays, we examined the relationship between the number of repeats in a TALE and its affinity, for both target and non-target DNA. Each additional repeat provides extra binding energy for the target DNA, with the gain decaying exponentially such that binding energy saturates. Affinity for non-target DNA also increases non-linearly with the number of repeats, but with a slower decay of gain. The difference between the effect of length on affinity for target versus non-target DNA manifests in specificity increasing then diminishing with increasing TALE length, peaking between 15 and 19 repeats. Modeling across different hypothetical saturation levels and rates of gain decay, reflecting different repeat compositions, yielded a similar range of specificity optima. This range encompasses the mean and median length of native TALEs, suggesting that these proteins as a group have evolved for maximum specificity.


Asunto(s)
Proteínas Bacterianas/química , Efectores Tipo Activadores de la Transcripción/química , Proteínas Bacterianas/fisiología , Secuencia de Bases , Sitios de Unión , ADN Bacteriano/química , Unión Proteica , Secuencias Repetidas en Tándem , Termodinámica , Efectores Tipo Activadores de la Transcripción/fisiología , Xanthomonas
4.
Mol Plant ; 10(2): 285-296, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-27965000

RESUMEN

TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcriptional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by TAL effectors makes them important also as tools for gene targeting and genome editing. Effector binding elements (EBEs) recognized by native TAL effectors in plants have been identified only on the forward strand of target promoters. Here, we demonstrate that TAL effectors can drive plant transcription from EBEs on either strand and in both directions. Furthermore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE on each strand of its promoter. By inserting that promoter and derivatives between two reporter genes oriented head to head, we show that the TAL effector drives expression from either EBE in the respective orientations, and that activity at the reverse-strand EBE also potentiates forward transcription driven by activity at the forward-strand EBE. Our results reveal new modes of action for TAL effectors, suggesting the possibility of yet unrecognized targets important in plant disease, expanding the search space for off-targets of custom TAL effectors, and highlighting the potential of TAL effectors for probing fundamental aspects of plant transcription.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/microbiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Efectores Tipo Activadores de la Transcripción/fisiología , Xanthomonas/fisiología , Sitios de Unión , ADN de Plantas/metabolismo , Oryza/genética , Enfermedades de las Plantas/genética , Regiones Promotoras Genéticas , Nicotiana/genética , Xanthomonas/genética
5.
Front Plant Sci ; 7: 1516, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790231

RESUMEN

Delivered into plant cells by type III secretion from pathogenic Xanthomonas species, TAL (transcription activator-like) effectors are nuclear-localized, DNA-binding proteins that directly activate specific host genes. Targets include genes important for disease, genes that confer resistance, and genes inconsequential to the host-pathogen interaction. TAL effector specificity is encoded by polymorphic repeats of 33-35 amino acids that interact one-to-one with nucleotides in the recognition site. Activity depends also on N-terminal sequences important for DNA binding and C-terminal nuclear localization signals (NLS) and an acidic activation domain (AD). Coding sequences missing much of the N- and C-terminal regions due to conserved, in-frame deletions are present and annotated as pseudogenes in sequenced strains of Xanthomonas oryzae pv. oryzicola (Xoc) and pv. oryzae (Xoo), which cause bacterial leaf streak and bacterial blight of rice, respectively. Here we provide evidence that these sequences encode proteins we call "truncTALEs," for "truncated TAL effectors." We show that truncTALE Tal2h of Xoc strain BLS256, and by correlation truncTALEs in other strains, specifically suppress resistance mediated by the Xo1 locus recently described in the heirloom rice variety Carolina Gold. Xo1-mediated resistance is triggered by different TAL effectors from diverse X. oryzae strains, irrespective of their DNA binding specificity, and does not require the AD. This implies a direct protein-protein rather than protein-DNA interaction. Similarly, truncTALEs exhibit diverse predicted DNA recognition specificities. And, in vitro, Tal2h did not bind any of several potential recognition sites. Further, a single candidate NLS sequence in Tal2h was dispensable for resistance suppression. Many truncTALEs have one 28 aa repeat, a length not observed previously. Tested in an engineered TAL effector, this repeat required a single base pair deletion in the DNA, suggesting that it or a neighbor disengages. The presence of the 28 aa repeat, however, was not required for resistance suppression. TruncTALEs expand the paradigm for TAL effector-mediated effects on plants. We propose that Tal2h and other truncTALEs act as dominant negative ligands for an immune receptor encoded by the Xo1 locus, likely a nucleotide binding, leucine-rich repeat protein. Understanding truncTALE function and distribution will inform strategies for disease control.

6.
BMC Struct Biol ; 15: 14, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26263895

RESUMEN

BACKGROUND: Sec4p is a small monomeric Ras-related GTP-binding protein (23 kDa) that regulates polarized exocytosis in S. cerevisiae. In this study we examine the structural effects of a conserved serine residue in the P-loop corresponding to G12 in Ras. RESULTS: We show that the Sec4p residue serine 29 forms a hydrogen bond with the nucleotide. Mutations of this residue have a different impact than equivalent mutations in Ras and can form stable associations with the exchange factor allowing us to elucidate the structure of a complex of Sec4p bound to the exchange factor Sec2p representing an early stage of the exchange reaction. CONCLUSIONS: Our structural investigation of the Sec4p-Sec2p complex reveals the role of the Sec2p coiled-coil domain in facilitating the fast kinetics of the exchange reaction. For Ras-family GTPases, single point mutations that impact the signaling state of the molecule have been well described however less structural information is available for equivalent mutations in the case of Rab proteins. Understanding the structural properties of mutants such as the one described here, provides useful insights into unique aspects of Rab GTPase function.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Serina/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Moleculares , Mutación , Multimerización de Proteína , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo
7.
Biochemistry ; 48(15): 3508-18, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19245227

RESUMEN

Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determination of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.


Asunto(s)
Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Xylella/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Histidina/química , Familia de Multigenes , Oxidación-Reducción , Proteína Disulfuro Isomerasas/genética , Especificidad por Sustrato , Xylella/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...