Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 103, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238702

RESUMEN

Molecular targeted therapy using a drug that suppresses the growth and spread of cancer cells via inhibition of a specific protein is a foundation of precision medicine and treatment. High expression of the proto-oncogene Bcl-3 promotes the proliferation and metastasis of cancer cells originating from tissues such as the colon, prostate, breast, and skin. The development of novel drugs targeting Bcl-3 alone or in combination with other therapies can cure these patients or prolong their survival. As a proof of concept, in the present study, we focused on metastatic melanoma as a model system. High-throughput screening and in vitro experiments identified BCL3ANT as a lead molecule that could interfere with Bcl-3-mediated cyclin D1 expression and cell proliferation and migration in melanoma. In experimental animal models of melanoma, it was demonstrated that the use of a Bcl-3 inhibitor can influence the survival of melanoma cells. Since there are no other inhibitors against Bcl-3 in the clinical pipeline for cancer treatment, this presents a unique opportunity to develop a highly specific drug against malignant melanoma to meet an urgent clinical need.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Masculino , Animales , Humanos , Melanoma/patología , Ciclina D1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias Cutáneas/patología , Proliferación Celular , Línea Celular Tumoral , Apoptosis
2.
Nat Commun ; 12(1): 1728, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741927

RESUMEN

Microsomal glutathione S-transferase 2 (MGST2) produces leukotriene C4, key for intracrine signaling of endoplasmic reticulum (ER) stress, oxidative DNA damage and cell death. MGST2 trimer restricts catalysis to only one out of three active sites at a time, but the molecular basis is unknown. Here, we present crystal structures of human MGST2 combined with biochemical and computational evidence for a concerted mechanism, involving local unfolding coupled to global conformational changes that regulate catalysis. Furthermore, synchronized changes in the biconical central pore modulate the hydrophobicity and control solvent influx to optimize reaction conditions at the active site. These unique mechanistic insights pertain to other, structurally related, drug targets.


Asunto(s)
Glutatión Transferasa/química , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Humanos , Leucotrieno C4/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estrés Oxidativo , Conformación Proteica
3.
Biochim Biophys Acta Gen Subj ; 1861(8): 2099-2111, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28528958

RESUMEN

BACKGROUND: A 12-lipoxygenase in zebra fish (zf12-LOX) was found to be required for normal embryonic development and LOXs are of great interest for targeted drug designing. In this study, we investigate the structural-functional aspects of zf12-LOX in response to calcium. METHODS: A soluble version of zf12-LOX was created by mutagenesis. Based on multiple sequence alignment, we mutated the putative calcium-responsive amino acids in N-PLAT domain of soluble zf12-LOX. Using a series of biophysical methods, we ascertained the oligomeric state, stability, structural integrity and conformational changes of zf12-LOX in response to calcium. We also compared the biophysical properties of soluble zf12-LOX with the mutant in the absence and presence of calcium. RESULTS: Here we provide a detailed characterization of soluble zf12-LOX and the mutant. Both proteins exist as compact monomers in solution, however the enzyme activity of soluble zf12-LOX is significantly increased in presence of calcium. We find that the stimulatory effect of calcium on zf12-LOX is related to a change in protein structure as observed by SAXS, adopting an open-state. In contrast, enzyme with a mutated calcium regulatory site has reduced activity-response to calcium and restricted large re-modeling, suggesting that it retains a closed-state in response to calcium. Taken together, our study suggests that Ca2+-dependent regulation is associated with different domain conformation(s) that might change the accessibility to substrate-binding site in response to calcium. GENERAL SIGNIFICANCE: The study can be broadly implicated in better understanding the mode(s) of action of LOXs, and the enzymes regulated by calcium in general.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Calcio/farmacología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Araquidonato 12-Lipooxigenasa/química , Sitios de Unión , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
4.
Sci Rep ; 6: 38316, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917951

RESUMEN

Both soluble and membrane-bound enzymes can catalyze the conversion of lipophilic substrates. The precise substrate access path, with regard to phase, has however, until now relied on conjecture from enzyme structural data only (certainly giving credible and valuable hypotheses). Alternative methods have been missing. To obtain the first experimental evidence directly determining the access paths (of lipophilic substrates) to phase constrained enzymes we here describe the application of a BODIPY-derived substrate (PS1). Using this tool, which is not accessible to cytosolic enzymes in the presence of detergent and, by contrast, not accessible to membrane embedded enzymes in the absence of detergent, we demonstrate that cytosolic and microsomal glutathione transferases (GSTs), both catalyzing the activation of PS1, do so only within their respective phases. This approach can serve as a guideline to experimentally validate substrate access paths, a fundamental property of phase restricted enzymes. Examples of other enzyme classes with members in both phases are xenobiotic-metabolizing sulphotransferases/UDP-glucuronosyl transferases or epoxide hydrolases. Since specific GSTs have been suggested to contribute to tumor drug resistance, PS1 can also be utilized as a tool to discriminate between phase constrained members of these enzymes by analyzing samples in the absence and presence of Triton X-100.


Asunto(s)
Enzimas Inmovilizadas/química , Epóxido Hidrolasas/química , Glucuronosiltransferasa/química , Glutatión Transferasa/química , Sulfotransferasas/química , Animales , Biocatálisis , Compuestos de Boro/química , Citosol/enzimología , Enzimas Inmovilizadas/metabolismo , Epóxido Hidrolasas/metabolismo , Células Eucariotas/enzimología , Colorantes Fluorescentes/química , Glucuronosiltransferasa/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inactivación Metabólica , Cinética , Microsomas/enzimología , Modelos Moleculares , Octoxinol/química , Especificidad por Sustrato , Sulfotransferasas/metabolismo , Xenobióticos/química , Xenobióticos/metabolismo
5.
J Biol Chem ; 291(35): 18410-8, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27365393

RESUMEN

Leukotriene C4 synthase (LTC4S) catalyzes the formation of the proinflammatory lipid mediator leukotriene C4 (LTC4). LTC4 is the parent molecule of the cysteinyl leukotrienes, which are recognized for their pathogenic role in asthma and allergic diseases. Cellular LTC4S activity is suppressed by PKC-mediated phosphorylation, and recently a downstream p70S6k was shown to play an important role in this process. Here, we identified Ser(36) as the major p70S6k phosphorylation site, along with a low frequency site at Thr(40), using an in vitro phosphorylation assay combined with mass spectrometry. The functional consequences of p70S6k phosphorylation were tested with the phosphomimetic mutant S36E, which displayed only about 20% (20 µmol/min/mg) of the activity of WT enzyme (95 µmol/min/mg), whereas the enzyme activity of T40E was not significantly affected. The enzyme activity of S36E increased linearly with increasing LTA4 concentrations during the steady-state kinetics analysis, indicating poor lipid substrate binding. The Ser(36) is located in a loop region close to the entrance of the proposed substrate binding pocket. Comparative molecular dynamics indicated that Ser(36) upon phosphorylation will pull the first luminal loop of LTC4S toward the neighboring subunit of the functional homotrimer, thereby forming hydrogen bonds with Arg(104) in the adjacent subunit. Because Arg(104) is a key catalytic residue responsible for stabilization of the glutathione thiolate anion, this phosphorylation-induced interaction leads to a reduction of the catalytic activity. In addition, the positional shift of the loop and its interaction with the neighboring subunit affect active site access. Thus, our mutational and kinetic data, together with molecular simulations, suggest that phosphorylation of Ser(36) inhibits the catalytic function of LTC4S by interference with the catalytic machinery.


Asunto(s)
Glutatión Transferasa/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Catálisis , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Leucotrieno A4/biosíntesis , Leucotrieno A4/química , Leucotrieno A4/genética , Ratones , Mutación Missense , Fosforilación , Estructura Secundaria de Proteína , Proteínas Quinasas S6 Ribosómicas 70-kDa/química , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
6.
Bioorg Med Chem Lett ; 26(15): 3547-51, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27363940

RESUMEN

Human 5-lipoxygenase (5-LOX) is responsible for the formation of leukotriene (LT)A4, a pivotal intermediate in the biosynthesis of the leukotrienes, a family of proinflammatory lipid mediators. 5-LOX has thus gained attention as a potential drug target. However, details of the kinetic mechanism of 5-LOX are still obscure. In this Letter, we investigated the kinetic isotope effect (KIE) of 5-LOX with its physiological substrate, arachidonic acid (AA). The observed KIE is 20±4 on kcat and 17±2 on kcat/KM at 25°C indicating a non-classical reaction mechanism. The observed rates show slight temperature dependence at ambient temperatures ranging from 4 to 35°C. Also, we observed low Arrhenius prefactor ratio (AH/AD=0.21) and a small change in activation energy (Ea(D)-Ea(H)=3.6J/mol) which suggests that 5-LOX catalysis involves tunneling as a mechanism of H-transfer. The measured KIE for 5-LOX involves a change in regioselectivity in response to deuteration at position C7, resulting in H-abstraction form C10 and formation of 8-HETE. The viscosity experiments influence the (H)kcat, but not (D)kcat. However the overall kcat/KM is not affected for labeled or unlabeled AA, suggesting that either the product release or conformational rearrangement might be involved in dictating kinetics of 5-LOX at saturating conditions. Investigation of available crystal structures suggests the role of active site residues (F421, Q363 and L368) in regulating the donor-acceptor distances, thus affecting H-transfer as well as regiospecificity. In summary, our study shows that that the H-abstraction is the rate limiting step for 5-LOX and that the observed KIE of 5-LOX is masked by a change in regioselectivity.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Ácido Araquidónico/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Ácido Araquidónico/síntesis química , Ácido Araquidónico/química , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/química , Estructura Molecular , Relación Estructura-Actividad
7.
PLoS One ; 11(3): e0152116, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27010627

RESUMEN

An important step in the production of inflammatory mediators of the leukotriene family is the Ca2+ mediated recruitment of 5 Lipoxygenase (5LO) to nuclear membranes. To study this reaction in vitro, the natural membrane mimicking environment of nanodiscs was used. Nanodiscs with 10.5 nm inner diameter were made with the lipid POPC and membrane scaffolding protein MSP1E3D1. Monomeric and dimeric 5LO were investigated. Monomeric 5LO mixed with Ca2+ and nanodiscs are shown to form stable complexes that 1) produce the expected leukotriene products from arachidonic acid and 2) can be, for the first time, visualised by native gel electrophoresis and negative stain transmission electron microscopy and 3) show a highest ratio of two 5LO per nanodisc. We interpret this as one 5LO on each side of the disc. The dimer of 5LO is visualised by negative stain transmission electron microscopy and is shown to not bind to nanodiscs. This study shows the advantages of nanodiscs to obtain basic structural information as well as functional information of a complex between a monotopic membrane protein and the membrane.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Calcio/metabolismo , Nanoestructuras , Araquidonato 5-Lipooxigenasa/química , Cromatografía en Gel , Dimerización , Humanos , Microscopía Electrónica de Transmisión , Electroforesis en Gel de Poliacrilamida Nativa , Unión Proteica
8.
Proc Natl Acad Sci U S A ; 113(4): 972-7, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755582

RESUMEN

Microsomal prostaglandin E2 synthase type 1 (mPGES-1) is responsible for the formation of the potent lipid mediator prostaglandin E2 under proinflammatory conditions, and this enzyme has received considerable attention as a drug target. Recently, a high-resolution crystal structure of human mPGES-1 was presented, with Ser-127 being proposed as the hydrogen-bond donor stabilizing thiolate anion formation within the cofactor, glutathione (GSH). We have combined site-directed mutagenesis and activity assays with a structural dynamics analysis to probe the functional roles of such putative catalytic residues. We found that Ser-127 is not required for activity, whereas an interaction between Arg-126 and Asp-49 is essential for catalysis. We postulate that both residues, in addition to a crystallographic water, serve critical roles within the enzymatic mechanism. After characterizing the size or charge conservative mutations Arg-126-Gln, Asp-49-Asn, and Arg-126-Lys, we inferred that a crystallographic water acts as a general base during GSH thiolate formation, stabilized by interaction with Arg-126, which is itself modulated by its respective interaction with Asp-49. We subsequently found hidden conformational ensembles within the crystal structure that correlate well with our biochemical data. The resulting contact signaling network connects Asp-49 to distal residues involved in GSH binding and is ligand dependent. Our work has broad implications for development of efficient mPGES-1 inhibitors, potential anti-inflammatory and anticancer agents.


Asunto(s)
Dipéptidos/química , Oxidorreductasas Intramoleculares/química , Microsomas/enzimología , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Glutatión/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Ligandos , Mutagénesis Sitio-Dirigida , Prostaglandina-E Sintasas , Conformación Proteica
9.
Biochim Biophys Acta ; 1854(10 Pt A): 1365-71, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26066610

RESUMEN

Human microsomal glutathione transferase 2 (MGST2) is a trimeric integral membrane protein that belongs to the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family. The mammalian MAPEG family consists of six members where four have been structurally determined. MGST2 activates glutathione to form a thiolate that is crucial for GSH peroxidase activity and GSH conjugation reactions with electrophilic substrates, such as 1-chloro-2,4-dinitrobenzene (CDNB). Several studies have shown that MGST2 is able to catalyze a GSH conjugation reaction with the epoxide LTA4 forming the pro-inflammatory LTC4. Unlike its closest homologue leukotriene C4 synthase (LTC4S), MGST2 appears to activate its substrate GSH using only one of the three potential active sites [Ahmad S, et al. (2013) Biochemistry. 52, 1755-1764]. In order to demonstrate and detail the mechanism of one-third of the sites reactivity of MGST2, we have determined the enzyme oligomeric state, by Blue native PAGE and Differential Scanning Calorimetry, as well as the stoichiometry of substrate and substrate analog inhibitor binding to MGST2, using equilibrium dialysis and Isothermal Titration Calorimetry, respectively. Global simulations were used to fit kinetic data to determine the catalytic mechanism of MGST2 with GSH and CDNB (1-chloro-2,4-dinitrobenzene) as substrates. The best fit was observed with 1/3 of the sites catalysis as compared with a simulation where all three sites were active. In contrast to LTC4S, MGST2 displays a 1/3 the sites reactivity, a mechanism shared with the more distant family member MGST1 and recently suggested also for microsomal prostaglandin E synthase-1.


Asunto(s)
Dinitroclorobenceno/química , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Glutatión/química , Secuencia de Aminoácidos , Calorimetría , Dominio Catalítico , Dinitroclorobenceno/metabolismo , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Glutatión/metabolismo , Glutatión Transferasa/genética , Humanos , Cinética , Microsomas/enzimología , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Pichia/genética , Pichia/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
10.
PLoS One ; 9(5): e96763, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24810165

RESUMEN

Leukotriene (LT) C4 synthase (LTC4S) is an integral membrane protein that catalyzes the conjugation reaction between the fatty acid LTA4 and GSH to form the pro-inflammatory LTC4, an important mediator of asthma. Mouse models of inflammatory disorders such as asthma are key to improve our understanding of pathogenesis and potential therapeutic targets. Here, we solved the crystal structure of mouse LTC4S in complex with GSH and a product analog, S-hexyl-GSH. Furthermore, we synthesized a nM inhibitor and compared its efficiency and binding mode against the purified mouse and human isoenzymes, along with the enzymes' steady-state kinetics. Although structural differences near the active site and along the C-terminal α-helix V suggest that the mouse and human LTC4S may function differently in vivo, our data indicate that mouse LTC4S will be a useful tool in future pharmacological research and drug development.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/química , Secuencia de Aminoácidos , Animales , Biocatálisis , Clonación Molecular , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
11.
Proc Natl Acad Sci U S A ; 111(11): 4227-32, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591641

RESUMEN

Leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a bifunctional zinc metalloenzyme that catalyzes the committed step in the formation of the proinflammatory mediator LTB4. Recently, the chemotactic tripeptide Pro-Gly-Pro was identified as an endogenous aminopeptidase substrate for LTA4 hydrolase. Here, we determined the crystal structure of LTA4 hydrolase in complex with a Pro-Gly-Pro analog at 1.72 Å. From the structure, which includes the catalytic water, and mass spectrometric analysis of enzymatic hydrolysis products of Pro-Gly-Pro, it could be inferred that LTA4 hydrolase cleaves at the N terminus of the palindromic tripeptide. Furthermore, we designed a small molecule, 4-(4-benzylphenyl)thiazol-2-amine, denoted ARM1, that inhibits LTB4 synthesis in human neutrophils (IC50 of ∼0.5 µM) and conversion of LTA4 into LTB4 by purified LTA4H with a Ki of 2.3 µM. In contrast, 50- to 100-fold higher concentrations of ARM1 did not significantly affect hydrolysis of Pro-Gly-Pro. A 1.62-Å crystal structure of LTA4 hydrolase in a dual complex with ARM1 and the Pro-Gly-Pro analog revealed that ARM1 binds in the hydrophobic pocket that accommodates the ω-end of LTA4, distant from the aminopeptidase active site, thus providing a molecular basis for its inhibitory profile. Hence, ARM1 selectively blocks conversion of LTA4 into LTB4, although sparing the enzyme's anti-inflammatory aminopeptidase activity (i.e., degradation and inactivation of Pro-Gly-Pro). ARM1 represents a new class of LTA4 hydrolase inhibitor that holds promise for improved anti-inflammatory properties.


Asunto(s)
Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Inflamación/enzimología , Modelos Moleculares , Oligopéptidos/metabolismo , Prolina/análogos & derivados , Conformación Proteica , Tiazoles/farmacología , Dominio Catalítico/genética , Cromatografía Líquida de Alta Presión , Cristalización , Epóxido Hidrolasas/química , Epóxido Hidrolasas/genética , Escherichia coli , Humanos , Inflamación/tratamiento farmacológico , Prolina/metabolismo , Espectrometría de Masas en Tándem , Tiazoles/química , Difracción de Rayos X
12.
Arch Biochem Biophys ; 545: 179-85, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24480307

RESUMEN

5-Lipoxygenase (5-LOX) catalyzes two steps in conversion of arachidonic acid to proinflammatory leukotrienes. Lipoxygenases, including human 5-LOX, consist of an N-terminal C2-like ß-sandwich and a catalytic domain. We expressed the 5-LOX domains separately, these were found to interact in the yeast two-hybrid system. The 5-LOX structure suggested association between Arg(101) in the ß-sandwich and Asp(166) in the catalytic domain, due to electrostatic interaction as well as hydrogen bonds. Indeed, mutagenic replacements of these residues led to loss of two-hybrid interaction. Interestingly, when Arg(101) was mutated to Asp in intact 5-LOX, enzyme activity was increased. Thus, higher initial velocity of the reaction (vinit) and increased final amount of products were monitored for 5-LOX-R101D, at several different assay conditions. In the 5-LOX crystal structure, helix α2 and adjacent loops (including Asp(166)) of the 5-LOX catalytic domain has been proposed to form a flexible lid controlling access to the active site, and lid movement would be determined by bonding of lid residues to the C2-like ß-sandwich. The more efficient catalysis following disruption of the R101-D166 ionic association supports the concept of such a flexible lid in human 5-LOX.


Asunto(s)
Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/metabolismo , Secuencia de Aminoácidos , Araquidonato 5-Lipooxigenasa/genética , Dominio Catalítico , Activación Enzimática , Humanos , Leucotrienos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Estructura Terciaria de Proteína
13.
J Biol Chem ; 289(8): 5199-207, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24366866

RESUMEN

Leukotriene (LT) C4 synthase (LTC4S) catalyzes the conjugation of the fatty acid LTA4 with the tripeptide GSH to produce LTC4, the parent compound of the cysteinyl leukotrienes, important mediators of asthma. Here we mutated Trp-116 in human LTC4S, a residue proposed to play a key role in substrate binding, into an Ala or Phe. Biochemical and structural characterization of these mutants along with crystal structures of the wild type and mutated enzymes in complex with three product analogs, viz. S-hexyl-, 4-phenyl-butyl-, and 2-hydroxy-4-phenyl-butyl-glutathione, provide new insights to binding of substrates and product, identify a new conformation of the GSH moiety at the active site, and suggest a route for product release, aided by Trp-116.


Asunto(s)
Glutatión Transferasa/química , Glutatión/análogos & derivados , Biocatálisis , Cristalografía por Rayos X , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Cinética , Leucotrieno A4/química , Leucotrieno C4/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformación Proteica , Especificidad por Sustrato , Triptófano/metabolismo
14.
Biochim Biophys Acta ; 1844(2): 439-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24333438

RESUMEN

Leukotriene A4 hydrolase/aminopeptidase (LTA4H) (EC 3.3.2.6) is a bifunctional zinc metalloenzyme with both an epoxide hydrolase and an aminopeptidase activity. LTA4H from the African claw toad, Xenopus laevis (xlLTA4H) has been shown to, unlike the human enzyme, convert LTA4 to two enzymatic metabolites, LTB4 and another biologically active product Δ(6)-trans-Δ(8)-cis-LTB4 (5(S),12R-dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid). In order to study the molecular aspect of the formation of this product we have characterized the structure and function of xlLTA4H. We solved the structure of xlLTA4H to a resolution of 2.3Å. It is a dimeric structure where each monomer has three domains with the active site in between the domains, similar as to the human structure. An important difference between the human and amphibian enzyme is the phenylalanine to tyrosine exchange at position 375. Our studies show that mutating F375 in xlLTA4H to tyrosine abolishes the formation of the LTB4 isomeric product Δ(6)-trans-Δ(8)-cis-LTB4. In an attempt to understand how one amino acid exchange leads to a new product profile as seen in the xlLTA4H, we performed a conformer analysis of the triene part of the substrate LTA4. Our results show that the Boltzmann distribution of substrate conformers correlates with the observed distribution of products. We suggest that the observed difference in product profile between the human and the xlLTA4H arises from different level of discrimination between substrate LTA4 conformers.


Asunto(s)
Epóxido Hidrolasas/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Leucotrieno B4/metabolismo , Proteínas de Xenopus/química , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Hidrólisis , Ácidos Hidroxieicosatetraenoicos/química , Cinética , Leucotrieno B4/química , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
15.
Biochemistry ; 52(10): 1755-64, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23409838

RESUMEN

Microsomal glutathione S-transferase 2 (MGST2) is a 17 kDa trimeric integral membrane protein homologous to leukotriene C4 synthase (LTC4S). MGST2 has been suggested to catalyze the biosynthesis of the pro-inflammatory mediator leukotriene C4 (LTC4) in cells devoid of LTC4S. A detailed biochemical study of MGST2 is critical for the understanding of its cellular function and potential role as an LTC4-producing enzyme. Here we have characterized the substrate specificity and catalytic properties of purified MGST2 by steady-state and pre-steady-state kinetic experiments. In comparison with LTC4S, which has a catalytic efficiency of 8.7 × 10(5) M(-1) s(-1), MGST2, with a catalytic efficiency of 1.8 × 10(4) M(-1) s(-1), is considerably less efficient in producing LTC4. However, the two enzymes display a similar KM(LTA4) of 30-40 µM. While LTC4S has one activated glutathione (GSH) (forming a thiolate) per enzyme monomer, the MGST2 trimer seems to display only third-of-the-sites reactivity for thiolate activation, which in part would explain its lower catalytic efficiency. Furthermore, MGST2 displays GSH-dependent peroxidase activity of ∼0.2 µmol min(-1) mg(-1) toward several lipid hydroperoxides. MGST2, but not LTC4S, is efficient in catalyzing conjugation of the electrophilic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the lipid peroxidation product 4-hydroxy-2-nonenal with GSH. Using stopped-flow pre-steady-state kinetics, we have characterized the full catalytic reaction of MGST2 with CDNB and GSH as substrates, showing an initial rapid equilibrium binding of GSH followed by thiolate formation. Burst kinetics for the CDNB-GSH conjugation step was observed only at low GSH concentrations (thiolate anion formation becoming rate-limiting under these conditions). Product release is rapid and does not limit the overall reaction. Therefore, in general, the chemical conjugation step is rate-limiting for MGST2 at physiological GSH concentrations. MGST2 and LTC4S exhibit distinct catalytic and mechanistic properties, reflecting adaptation to broad and specific physiological functions, respectively.


Asunto(s)
Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Catálisis , Dominio Catalítico , Glutatión/metabolismo , Glutatión Transferasa/genética , Humanos , Cinética , Leucotrieno C4/biosíntesis , Protones , Especificidad por Sustrato , Compuestos de Sulfhidrilo/metabolismo
16.
Biochemistry ; 51(35): 6892-4, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22891633

RESUMEN

Campylobacter and Helicobacter species express a 6-amino-6-deoxyfutalosine N-ribosylhydrolase (HpMTAN) proposed to function in menaquinone synthesis. BuT-DADMe-ImmA is a 36 pM transition state analogue of HpMTAN, and the crystal structure of the enzyme-inhibitor complex reveals the mechanism of inhibition. BuT-DADMe-ImmA has a MIC(90) value of <8 ng/mL for Helicobacter pylori growth but does not cause growth arrest in other common clinical pathogens, thus demonstrating potential as an H. pylori-specific antibiotic.


Asunto(s)
Adenina/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , N-Glicosil Hidrolasas/antagonistas & inhibidores , Pirrolidinas/química , Pirrolidinas/farmacología , Adenina/química , Adenina/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Modelos Moleculares , N-Glicosil Hidrolasas/metabolismo
17.
Biochemistry ; 51(4): 848-56, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22217203

RESUMEN

Human leukotriene C4 synthase (hLTC4S) is an integral membrane protein that catalyzes the committed step in the biosynthesis of cysteinyl-leukotrienes, i.e., formation of leukotriene C4 (LTC4). This molecule, together with its metabolites LTD4 and LTE4, induces inflammatory responses, particularly in asthma, and thus, the enzyme is an attractive drug target. During the catalytic cycle, glutathione (GSH) is activated by hLTC4S that forms a nucleophilic thiolate anion that will attack LTA4, presumably according to an S(N)2 reaction to form LTC4. We observed that GSH thiolate anion formation is rapid and occurs at all three monomers of the homotrimer and is concomitant with stoichiometric release of protons to the medium. The pK(a) (5.9) for enzyme-bound GSH thiol and the rate of thiolate formation were determined (k(obs) = 200 s⁻¹). Taking advantage of a strong competitive inhibitor, glutathionesulfonic acid, shown here by crystallography to bind in the same location as GSH, we determined the overall dissociation constant (K(d((GS) = 14.3 µM). The release of the thiolate was assessed using a GSH release experiment (1.3 s⁻¹). Taken together, these data establish that thiolate anion formation in hLTC4S is not the rate-limiting step for the overall reaction of LTC4 production (k(cat) = 26 s⁻¹), and compared to the related microsomal glutathione transferase 1, which displays very slow GSH thiolate anion formation and one-third of the sites reactivity, hLTC4S has evolved a different catalytic mechanism.


Asunto(s)
Glutatión Transferasa/metabolismo , Glutatión/análogos & derivados , Leucotrieno C4/metabolismo , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Arginina/química , Unión Competitiva , Biocatálisis , Dominio Catalítico/efectos de los fármacos , Cisteína/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Glutatión/química , Glutatión/metabolismo , Glutatión/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/química , Glutatión Transferasa/genética , Humanos , Concentración de Iones de Hidrógeno , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Leucotrieno A4/metabolismo , Terapia Molecular Dirigida , Conformación Proteica/efectos de los fármacos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Biochemistry ; 50(11): 1885-93, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21247194

RESUMEN

Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K(m) = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap(4)A (2.0 Å resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg(2+) ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer α/ß/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.


Asunto(s)
Adenosina Quinasa/química , Adenosina Quinasa/metabolismo , Anopheles/enzimología , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Adenosina/metabolismo , Animales , Anopheles/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Genoma , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
19.
J Biol Chem ; 285(52): 40771-6, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20980252

RESUMEN

Human leukotriene C(4) synthase (hLTC(4)S) is an integral membrane enzyme that conjugates leukotriene (LT) A(4) with glutathione to form LTC(4), a precursor to the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)) that are involved in the pathogenesis of human bronchial asthma. From the crystal structure of hLTC(4)S, Arg-104 and Arg-31 have been implicated in the conjugation reaction. Here, we used site-directed mutagenesis, UV spectroscopy, and x-ray crystallography to examine the catalytic role of Arg-104 and Arg-31. Exchange of Arg-104 with Ala, Ser, Thr, or Lys abolished 94.3-99.9% of the specific activity against LTA(4). Steady-state kinetics of R104A and R104S revealed that the K(m) for GSH was not significantly affected. UV difference spectra of the binary enzyme-GSH complex indicated that GSH ionization depends on the presence of Arg-104 because no thiolate signal, with λ(max) at 239 nm, could be detected using R104A or R104S hLTC(4)S. Apparently, the interaction of Arg-104 with the thiol group of GSH reduces its pK(a) to allow formation of a thiolate anion and subsequent nucleophilic attack at C6 of LTA(4). On the other hand, exchange of Arg-31 with Ala or Glu reduced the catalytic activity of hLTC(4)S by 88 and 70%, respectively, without significantly affecting the k(cat)/K(m) values for GSH, and a crystal structure of R31Q hLTC(4)S (2.1 Å) revealed a Gln-31 side chain pointing away from the active site. We conclude that Arg-104 plays a critical role in the catalytic mechanism of hLTC(4)S, whereas a functional role of Arg-31 seems more elusive. Because Arg-104 is a conserved residue, our results pertain to other homologous membrane proteins and represent a structure-function paradigm probably common to all microsomal GSH transferases.


Asunto(s)
Arginina/química , Glutatión Transferasa/química , Sustitución de Aminoácidos , Arginina/genética , Arginina/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Mutación Missense , Oxidación-Reducción , Espectrofotometría Ultravioleta
20.
Biochem Biophys Res Commun ; 396(1): 135-9, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20494126

RESUMEN

Eicosanoids are a family of oxygenated metabolites of arachidonic acid, including the prostaglandins, thromboxanes, leukotrienes and lipoxins. These lipid mediators play essential roles in normal cellular homeostasis as well as in a number of disease states. This review will focus on recent advances in the field of eicosanoids and highlight specific discoveries and achievements. Emphasis will be placed on structure and receptor biology, which are of significant pharmacological and clinical relevance.


Asunto(s)
Diseño de Fármacos , Ácidos Eicosanoicos/metabolismo , Antagonistas de Leucotrieno/química , Leucotrienos/metabolismo , Receptores de Leucotrienos/metabolismo , Proteínas Activadoras de la 5-Lipooxigenasa , Araquidonato 5-Lipooxigenasa/metabolismo , Investigación Biomédica , Proteínas Portadoras/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Citosol/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Humanos , Antagonistas de Leucotrieno/farmacología , Antagonistas de Leucotrieno/uso terapéutico , Proteínas de la Membrana/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA