Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Surg ; 8: 602181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937312

RESUMEN

Incisional hernia is a frequent consequence of major surgery. Most repairs augment the abdominal wall with artificial meshes fixed to the tissues with sutures, tacks, or glue. Pain and recurrences plague at least 10-20% of the patients after repair of the abdominal defect. How should a repair of incisional hernias be constructed to achieve durability? Incisional hernia repair can be regarded as a compound technique. The biomechanical properties of a compound made of tissue, textile, and linking materials vary to a large extent. Tissues differ in age, exercise levels, and comorbidities. Textiles are currently optimized for tensile strength, but frequently fail to provide tackiness, dynamic stiction, and strain resistance to pulse impacts. Linking strength with and without fixation devices depends on the retention forces between surfaces to sustain stiction under dynamic load. Impacts such a coughing or sharp bending can easily overburden clinically applied composite structures and can lead to a breakdown of incisional hernia repair. Our group developed a bench test with tissues, fixation, and textiles using dynamic intermittent strain (DIS), which resembles coughing. Tissue elasticity, the size of the hernia under pressure, and the area of instability of the abdominal wall of the individual patient was assessed with low-dose computed tomography of the abdomen preoperatively. A surgical concept was developed based on biomechanical considerations. Observations in a clinical registry based on consecutive patients from four hospitals demonstrate low failure rates and low pain levels after 1 year. Here, results from the bench test, the application of CT abdomen with Valsalva's maneuver, considerations of the surgical concept, and the clinical application of our approach are outlined.

2.
Front Surg ; 8: 764470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977141

RESUMEN

Aim: Mechanical principles successfully guide the construction of polymer material composites in engineering. Since the abdominal wall is a polymer composite augmented with a textile during incisional hernia repair we ask: can incisional hernia be repaired safely and durably based on biomechanical principles? Material and Methods: Repair materials were assessed on a self-built bench test using pulse loads to elude influences on the reconstruction of the abdominal wall. Tissue elasticity was analyzed preoperatively as needed with computed tomography at rest and during Valsalva's maneuver. Preoperatively, the critical retention force of the reconstruction to pulse loads was calculated and a biomechanically durable repair was designed based on the needs of the individual patient. Intraoperatively, the design was adjusted as needed. Hernia meshes with high grip factors (Progrip®, Dahlhausen® Cicat) were used for the repairs. Mesh sizes, fixation elements and reconstructive details were oriented on the biomechanical design. All patients recieved single-shot antibiosis. Patients were discharged after full ambulation was achieved. Results: A total of 163 patients (82 males and 81 females) were treated for incisional hernia in four hospitals by ten surgeons. Primary hernia was repaired in 119 patients. Recurrent hernia was operated on in 44 cases. Recurrent hernia was significantly larger (median 161 cm2 vs. 78 cm2; u-test: p = 0.00714). Re-do surgery took significantly longer (median 229 min vs. 150 min; p < 0.00001) since recurrent disease required more often transversus abdominis release (70% vs. 47%). GRIP tended to be higher in recurrent repair (p = 0.01828). Complication rates (15%) and hospital stay were the same (6 vs. 6 days; p = 0.28462). After 1 year, no recurrence was detected in either group. Pain levels were equally low in both primary and recurrent hernia repairs (median NAS = 0 in both groups at rest and under load, p = 0.88866). Conclusion: Incisional hernia can safely and durably be repaired based on biomechanical principles both in primary and recurrent disease. The GRIP concept provides a base for the application of biomechanical principles in incisional hernia repair.

3.
Clin Res Cardiol ; 104(3): 250-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25331161

RESUMEN

BACKGROUND: Vascular amyloid deposition is common in light-chain amyloidosis resulting in endothelial dysfunction. Human placental growth factor (PlGF), a member of the vascular endothelial growth factor family was found to be altered in diverse pathological conditions, e.g. endothelial dysfunction. This study evaluated the clinical role of PlGF in light-chain amyloidosis. METHODS: PlGF (cobas-PlGF, Roche Diagnostics, Mannheim, Germany) was analyzed in 125 consecutive patients with AL and correlated with diverse clinical parameters including mortality. RESULTS: Kidney (n = 76) and heart (n = 57) were predominantly affected by amyloid deposition. Median PlGF was 26.3 (21.1-42.1) ng/L, NT-proBNP 3649 (1124-8581) pg/mL, and hs-TnT 42 (21-107) ng/L. PlGF increased with number of organs involved and with deterioration of renal function. A significant correlation of PlGF with hs-TnT (ρ = 0.306; p = 0.0007) and NT-proBNP (ρ = 0.315; p = 0.0006) was observed, but no correlation was observed with clinical, echocardiography, and electrocardiography parameters of cardiac involvement. In this cohort 1-year all-cause mortality was 19.2 %. The best cutoff discriminating survivors and non-survivors was 28.44 ng/L (sensitivity 66.7 %; specificity 78.1 %). A three-step risk model including hs-TnT and NT-proBNP revealed a better discrimination if patients at intermediary risk were additionally stratified by PlGF. Net reclassification index was 37.2 % (p = 0.002). Multivariate analysis revealed PlGF, difference of involved and uninvolved light chain, number of organs involved and risk class according to troponin T and NT-proBNP as independent predictors of mortality. CONCLUSION: Plasma PlGF values in AL are invariably associated with the number of involved organs, but not with clinical, echocardiography, and electrocardiography parameters of cardiac involvement. PlGF provide useful information for risk stratification of patients at intermediary risk according to hs-TnT and NT-proBNP.


Asunto(s)
Amiloidosis/diagnóstico , Cardiomiopatías/diagnóstico , Cadenas Ligeras de Inmunoglobulina/sangre , Enfermedades Renales/diagnóstico , Proteínas Gestacionales/sangre , Anciano , Amiloidosis/sangre , Amiloidosis/inmunología , Amiloidosis/mortalidad , Biomarcadores/sangre , Cardiomiopatías/sangre , Cardiomiopatías/inmunología , Cardiomiopatías/mortalidad , Progresión de la Enfermedad , Femenino , Alemania , Humanos , Estimación de Kaplan-Meier , Enfermedades Renales/sangre , Enfermedades Renales/inmunología , Enfermedades Renales/mortalidad , Masculino , Persona de Mediana Edad , Factor de Crecimiento Placentario , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...