Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743049

RESUMEN

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ritmo Circadiano/genética , Relojes Circadianos/genética , Anémonas de Mar/genética , Anémonas de Mar/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fotoperiodo , Cnidarios/fisiología , Cnidarios/genética
2.
Sci Adv ; 8(37): eabo6467, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112690

RESUMEN

Studying chronobiology in reef-building corals is challenging due to the tightly coupled symbiosis with their photosynthetic algae, Symbiodiniaceae. Although symbiosis requires metabolic synchronization and coordination of cellular processes in the holobiont, the cross-talk between the host and symbiont's clocks is still puzzling. Here, we use the mesophotic coral Euphyllia paradivisa to examine temporal gene expression patterns in symbiotic and aposymbiotic morphs exposed to natural light/dark cycles and constant darkness. Our comparative transcriptomic analyses revealed circadian and circatidal cycles of gene expression with a predominant diel pattern in both coral morphs. We found a substantial number of transcripts consistently rhythmic under both light conditions, including genes likely involved in the cnidarians' circadian clock, thus indicating that an endogenous clock, which can oscillate independently from the Symbiodiniaceae clock, exists in E. paradivisa. The analysis further manifests the remarkable impacts of symbiosis on transcriptional rhythms and implies that the algae's presence influences the host's biorhythm.

3.
Sci Rep ; 11(1): 15451, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326433

RESUMEN

In cnidarians, long-term ecological success relies on sexual reproduction. The sea anemone Nematostella vectensis, which has emerged as an important model organism for developmental studies, can be induced for spawning by temperature elevation and light exposure. To uncover molecular mechanisms and pathways underlying spawning, we characterized the transcriptome of Nematostella females before and during spawning induction. We identified an array of processes involving numerous receptors, circadian clock components, cytoskeleton, and extracellular transcripts that are upregulated upon spawning induction. Concurrently, processes related to the cell cycle, fatty acid metabolism, and other housekeeping functions are downregulated. Real-time qPCR revealed that light exposure has a minor effect on expression levels of most examined transcripts, implying that temperature change is a stronger inducer for spawning in Nematostella. Our findings reveal the potential mechanisms that may enable the mesenteries to serve as a gonad-like tissue for the developing oocytes and expand our understanding of sexual reproduction in cnidarians.


Asunto(s)
Regulación de la Expresión Génica , Anémonas de Mar/metabolismo , Animales , Relojes Circadianos , Citoesqueleto/metabolismo , Ecología , Evolución Molecular , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Concentración de Iones de Hidrógeno , Luz , Biología Molecular , Oocitos/citología , Fotoperiodo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducción , Temperatura , Transcriptoma
4.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299075

RESUMEN

Organisms' survival is associated with the ability to respond to natural or anthropogenic environmental stressors. Frequently, these responses involve changes in gene regulation and expression, consequently altering physiology, development, or behavior. Here, we present modifications in response to heat exposure that mimics extreme summertime field conditions of lab-cultured and field-conditioned Nematostella vectensis. Using ATAC-seq and RNA-seq data, we found that field-conditioned animals had a more concentrated reaction to short-term thermal stress, expressed as enrichment of the DNA repair mechanism pathway. By contrast, lab animals had a more diffuse reaction that involved a larger number of differentially expressed genes and enriched pathways, including amino acid metabolism. Our results demonstrate that pre-conditioning affects the ability to respond efficiently to heat exposure in terms of both chromatin accessibility and gene expression and reinforces the importance of experimentally addressing ecological questions in the field.


Asunto(s)
Cromatina/fisiología , Regulación de la Expresión Génica , Calor , Laboratorios/estadística & datos numéricos , Anémonas de Mar/genética , Transcriptoma , Animales , Monitoreo del Ambiente , Perfilación de la Expresión Génica , Anémonas de Mar/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA