Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Neurochem Res ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105899

RESUMEN

Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.

2.
Front Neurosci ; 18: 1447688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176379

RESUMEN

Traumatic brain injury (TBI) represents a public health issue with a high mortality rate and severe neurological and psychiatric consequences. Mood and anxiety disorders are some of the most frequently reported. Primary and secondary damage can cause a loss of neurons and glial cells, leading to dysfunction of neuronal circuits, which can induce imbalances in many neurotransmitter systems. Monoaminergic systems, especially the dopaminergic system, are some of the most involved in the pathogenesis of neuropsychiatric and cognitive symptoms after TBI. In this work, we summarize the studies carried out in patients who have suffered TBI and describe alterations in the dopaminergic system, highlighting (1) dysfunction of the dopaminergic neuronal circuits caused by TBI, where modifications are shown in the dopamine transporter (DAT) and alterations in the expression of dopamine receptor 2 (D2R) in brain areas with dopaminergic innervation, thus establishing a hypodopaminergic state and (2) variations in the concentration of dopamine and its metabolites in biological fluids of post-TBI patients, such as elevated dopamine (DA) and alterations in homovanillic acid (HVA). On the other hand, we show a large number of reports of alterations in the dopaminergic system after a TBI in animal models, in which modifications in the levels of DA, DAT, and HVA have been reported, as well as alterations in the expression of tyrosine hydroxylase (TH). We also describe the biological pathways, neuronal circuits, and molecular mechanisms potentially involved in mood and anxiety disorders that occur after TBI and are associated with alterations of the dopaminergic system in clinical studies and animal models. We describe the changes that occur in the clinical picture of post-TBI patients, such as alterations in mood and anxiety associated with DAT activity in the striatum, the relationship between post-TBI major depressive disorders (MDD) with lower availability of the DA receptors D2R and D3R in the caudate and thalamus, as well as a decrease in the volume of the substantia nigra (SN) associated with anxiety symptoms. With these findings, we discuss the possible relationship between the disorders caused by alterations in the dopaminergic system in patients with TBI.

3.
J Mater Sci Mater Med ; 35(1): 51, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172269

RESUMEN

The use of TiO2 as a photosensitizer in photodynamic therapy is limited due to TiO2 generates reactive oxygen species only under UV irradiation. The TiO2 surface has been modified with different functional groups to achieve activation at longer wavelengths (visible light). This work reports the synthesis, characterization, and biological toxicity assay of TiO2 nanoparticles functionalized with folic acid and combined with a zinc phthalocyanine to obtain a nano-photosensitizer for its application in photodynamic therapy for glioblastoma cancer treatment. The nano-photosensitizer was prepared using the sol-gel method. Folic acid and zinc phthalocyanine were added during the hydrolysis and condensation of titanium butoxide, which was the TiO2 precursor. The samples obtained were characterized by several microscopy and spectroscopy techniques. An in vitro toxicity test was performed using the MTT assay and the C6 cellular line. The results of the characterization showed that the structure of the nanoparticles corresponds mainly to the anatase phase. Successful functionalization with folic acid and an excellent combination with phthalocyanine was also achieved. Both folic acid-functionalized TiO2 and phthalocyanine-functionalized TiO2 had no cytotoxic effect on C6 cells (even at high concentrations) in comparison to Cis-Pt, which was very toxic to C6 cells. The materials behaved similarly to the control (untreated cells). The cell viability and light microscopy images suggest that both materials could be considered biocompatible and mildly phototoxic in these cells when activated by light.


Asunto(s)
Supervivencia Celular , Ácido Fólico , Glioblastoma , Indoles , Isoindoles , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Titanio , Compuestos de Zinc , Titanio/química , Ácido Fólico/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Indoles/química , Indoles/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Humanos , Animales , Ratas
4.
Antioxidants (Basel) ; 13(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38929144

RESUMEN

Oxidative stress and apoptosis cell death are critical secondary damage mechanisms that lead to losing neighboring healthy tissue after cerebral ischemia. This study aims to characterize the type of interaction between dapsone (DDS) and cannabidiol (CBD) and its cytoprotective effect in an in vitro model of oxygen and glucose deprivation for 6 h followed by 24 h of reoxygenation (OGD/R), using the SH-SY5Y cell line. For the combined concentrations, an isobolographic study was designed to determine the optimal concentration-response combinations. Cell viability was evaluated by measuring the lactate dehydrogenase (LDH) release and 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assays. Also, the reactive oxygen species (ROS) and reduced glutathione (GSH) levels were analyzed as oxidative stress markers. Finally, caspase-3 activity was evaluated as a marker cell death by apoptosis. The results showed a decrease in cell viability, an increase in oxidant stress, and the activity of caspase-3 by the effect of OGD/R. Meanwhile, both DDS and CBD demonstrated antioxidant, antiapoptotic, and cytoprotective effects in a concentration-response manner. The isobolographic study indicated that the concentration of 2.5 µM of DDS plus 0.05 µM of CBD presented a synergistic effect so that in treatment, cell death due to OGD/R decreased. The findings indicate that DDS-CBD combined treatment may be a helpful therapy in cerebral ischemia with reperfusion.

5.
Toxics ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38787097

RESUMEN

Globally, there is growing concern over the presence of lead (Pb) in foods because it is a heavy metal with several toxic effects on human health. However, monitoring studies have not been conducted in Mexico. In this study, we estimated the concentrations of Pb in the most consumed foods and identified those that exceeded the maximum limits (MLs) for Pb in foods established by the International Standards. Based on the Mexican National Health and Nutrition Survey, 103 foods and beverages were selected and purchased in Mexico City retail stores and markets. Samples were analyzed twice using atomic absorption spectrophotometry. Values above the limit of quantification (0.0025 mg/kg) were considered to be detected. The percentage of detected values was 18%. The highest concentration was found in infant rice cereal (1.005 mg/kg), whole wheat bread (0.447 mg/kg), pre-cooked rice (0.276 mg/kg), black pepper (0.239 mg/kg), and turmeric (0.176 mg/kg). Among the foods with detected Pb, the levels in infant rice cereal, whole wheat bread, pre-cooked rice, and soy infant formula exceeded the MLs. The food groups with the highest percentages of exceeded MLs were baby foods (18%) and cereals (11%). Monitoring the concentration of contaminants in foods is essential for implementing food safety policies and protecting consumer health.

6.
Curr Neuropharmacol ; 22(11): 1899-1908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486390

RESUMEN

INTRODUCTION: Armodafinil is a psychostimulant that promotes alertness, and it has been shown to improve attention, memory, and fatigue in healthy adults and adults with neurodevelopmental conditions that share symptoms with Attention Deficit Hyperactivity Disorder (ADHD). It is generally well tolerated and safe, and most of the adverse events reported are considered not serious. However, the available evidence on the efficacy of armodafinil for the treatment of ADHD in adults is scarce. OBJECTIVE: The present review aims to perform a systematized search of the available evidence on the possible therapeutic benefit of armodafinil treatment in adult patients with ADHD. METHODS: A literature review using PubMed was conducted to compile and summarize the available clinical and scientific evidence on the possible use of armodafinil as a pharmacological treatment in adult patients with ADHD. RESULTS: From the 86 articles reviewed, the available evidence showed that both acute and chronic treatment with armodafinil can improve wakefulness, memory, impulse control, and executive functions in adults with sleep disorders and other conditions. In addition, evidence of improvement in cognitive functions and mood alterations in other neuropsychiatric conditions was shown. CONCLUSION: Armodafinil could be useful for the treatment of ADHD in adults, according to the review of the literature from both pre-clinical and clinical studies.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Modafinilo , Humanos , Modafinilo/uso terapéutico , Modafinilo/farmacología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Promotores de la Vigilia/uso terapéutico , Promotores de la Vigilia/farmacología , Adulto , Animales , Estimulantes del Sistema Nervioso Central/uso terapéutico , Estimulantes del Sistema Nervioso Central/farmacología , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/farmacología
7.
Polymers (Basel) ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543428

RESUMEN

Biological treatments involve the application of metallic material coatings to enhance biocompatibility and properties. In invasive therapies, metallic electrodes are utilized, which are implanted in patients. One of these invasive therapeutic procedures is deep brain stimulation (DBS), an effective therapy for addressing the motor disorders observed in patients with Parkinson's disease (PD). This therapy involves the implantation of electrodes (IEs) into the subthalamic nucleus (STN). However, there is still a need for the optimization of these electrodes. Plasma-synthesized polypyrrole doped with iodine (PPPy/I) has been reported as a biocompatible and anti-inflammatory biomaterial that promotes nervous system regeneration. Given this information, the objective of the present study was to develop and characterize a PPPy/I-coated electrode for implantation into the STN. The characterization results indicate a uniform coating along the electrode, and physical-chemical characterization studies were conducted on the polymer. Subsequently, the IEs, both coated and uncoated with PPPy/I, were implanted into the STN of male rats of the Wistar strain to conduct an electrographic recording (EG-R) study. The results demonstrate that the IE coated with PPPy/I exhibited superior power and frequency signals over time compared to the uncoated IE (p < 0.05). Based on these findings, we conclude that an IE coated with PPPy/I has optimized functional performance, with enhanced integrity and superior signal quality compared to an uncoated IE. Therefore, we consider this a promising technological development that could significantly improve functional outcomes for patients undergoing invasive brain therapies.

8.
RSC Adv ; 14(2): 855-862, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174271

RESUMEN

Copper deficiency can trigger various diseases such as Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and even compromise the development of living beings, as manifested in Menkes disease (MS). Thus, the regulated administration (controlled release) of copper represents an alternative to reduce neuronal deterioration and prevent disease progression. Therefore, we present, to the best of our knowledge, the first experimental in vitro investigation for the kinetics of copper release from MOF-74(Cu) and its distribution in vivo after oral administration in male Wistar rats. Taking advantage of the abundance and high periodicity of copper within the crystalline-nanostructured metal-organic framework material (MOF-74(Cu)), it was possible to control the release of copper due to the partial degradation of the material. Thus, we simultaneously corroborated a low accumulation of copper in the liver (the main detoxification organ) and a slight increase of copper in the brain (striatum and midbrain), demonstrating that MOF-74(Cu) is a promising pharmacological alternative (controlled copper source) to these diseases.

9.
Toxics ; 11(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37755811

RESUMEN

Consumption of St. John's wort plant is high worldwide due to its various medicinal properties. However, herbal products containing St. John's wort may be contaminated with toxic metals. This is often related to contamination of both water and the atmosphere, lack of proper cultivation methods, and inadequate plant storage conditions, as well as a lack of stricter sanitary supervision. A safety assessment of copper (Cu), lead (Pb), cadmium (Cd) and arsenic (As) content in 23 products containing St. John's wort (pharmaceutical herbal products, food supplements and traditional herbal remedies) sold in the metropolitan area of Mexico City was conducted. The analysis of metals was determined using a graphite-furnace atomic absorption spectrometer. All herbal products were contaminated with Cu, Pb, Cd and As. The pharmaceutical herbal items showed less contamination by metals. The daily human intake (DHI) values for Pb exceeded the permissible limits in the group of traditional herbal remedies. The DHI calculation for As exceeded the permitted intake values for all items in the group of traditional herbal remedies, five food supplements and one pharmaceutical herbal product. The hazard indicator calculation of the non-carcinogenic cumulative risk values for traditional herbal remedies was greater than 1, suggesting a risk to human health.

10.
Reprod Toxicol ; 120: 108445, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482142

RESUMEN

There are numerous evidence showing that cadmium (Cd) is an endocrine disruptor that exerts multiple toxic effects at different reproductive levels, including male sexual behavior (MSB). The effect of early exposure to Cd on sexual incentive motivation (SIM) and MSB in adult stage, and the immunoreactivity of receptors for hormones such as estrogens and androgens in brain regions that are relevant for the SIM and MSB display, have not been studied until now. The present study evaluated the effects of 0.5 and 1 mg/kg CdCl2 from day 1-56 of postnatal life on SIM and MSB in adults rats, as well as serum testosterone concentrations, Cd concentration in blood, testis, and brain areas, and the immunoreactivity in estrogen receptors (ER-α and -ß), and androgen receptor (AR) in the olfactory bulbs (OB), medial preoptic area (mPOA), and medial amygdala (MeA). Our results showed that both doses of Cd decreased SIM and MSB, accompanied by low serum concentrations of testosterone. Also, there was a significant reduction in immunoreactivity of ER-α and AR in mPOA, and a significant reduction in AR in MeA on male rats treated with Cd 1 mg/kg. These results show that exposure to high doses of Cd in early postnatal life could alter the correct integration of hormonal signals in the brain areas that regulate and display SIM and MSB in adult male rats.


Asunto(s)
Cadmio , Motivación , Ratas , Animales , Masculino , Cadmio/metabolismo , Receptores Androgénicos/metabolismo , Conducta Sexual Animal , Encéfalo/metabolismo , Estrógenos/farmacología , Testosterona , Receptores de Estrógenos/metabolismo
11.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445592

RESUMEN

Parkinson's disease is a neurodegenerative disorder characterized by oxidative stress and immune activation in the nigro-striatal pathway. Simvastatin regulates cholesterol metabolism and protects from atherosclerosis disease. Simvastatin-tween 80 was administered 7 days before sterotaxic intrastriatal administration of MPP+ (1-methyl-4-phenylpyridine) in rats. Fluorescent lipidic product formation, dopamine levels, and circling behavior were considered damage markers. Twenty-four hours and six days after, the animal group lesioned with MPP+ showed significant damage in relation to the control group. Animals pretreated with simvastatin significantly reduced the MPP+-induced damage compared to the MPP+ treated group. As apoptosis promotes neuroinflammation and neuronal degeneration in Parkinson's disease, and since there is not currently a proteomic map of the nigro-striatum of rats and assuming a high homology among the identified proteins in other rat tissues, we based the search for rat protein homologs related to the establishment of inflammation response. We demonstrate that most proteins related to inflammation decreased in the simvastatin-treated rats. Furthermore, differential expression of antioxidant enzymes in striated tissue of rat brains was found in response to simvastatin. These results suggest that simvastatin could prevent striatal MPP+-induced damage and, for the first time, suggest that the molecular mechanisms involved in this have a protective effect.


Asunto(s)
Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Simvastatina/farmacología , Simvastatina/uso terapéutico , Simvastatina/metabolismo , Proteómica , Sustancia Negra/metabolismo , Dopamina/metabolismo , 1-Metil-4-fenilpiridinio/farmacología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad
12.
Brain Sci ; 13(6)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37371349

RESUMEN

Glioblastoma is the most aggressive and lethal brain tumor in adults, presenting diffuse brain infiltration, necrosis, and drug resistance. Although new drugs have been approved for recurrent patients, the median survival rate is two years; therefore, new alternatives to treat these patients are required. Previous studies have reported the anticancer activity of albendazole, its active metabolite albendazole sulfoxide, and melatonin; therefore, the present study was performed to evaluate if the combination of melatonin with albendazole or with albendazole sulfoxide induces an additive or synergistic cytotoxic effect on C6 and RG2 rat glioma cells, as well as on U87 human glioblastoma cells. Drug interaction was determined by the Chou-Talalay method. We evaluated the mechanism of cell death by flow cytometry, immunofluorescence, and crystal violet staining. The cytotoxicity of the combinations was mainly synergistic. The combined treatments induced significantly more apoptotic and autophagic cell death on the glioma cell lines. Additionally, albendazole and albendazole sulfoxide inhibited proliferation independently of melatonin. Our data justify continuing with the evaluation of this proposal since the combinations could be a potential strategy to aid in the treatment of glioblastoma.

13.
Front Neurol ; 14: 1124245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288064

RESUMEN

Introduction: Spinal cord injury (SCI) can cause paralysis, for which effective therapeutic strategies have not been developed yet. The only accepted strategy for patients is rehabilitation (RB), although this does not allow complete recovery of lost functions, which makes it necessary to combine it with strategies such as plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical properties than PPy synthesized by conventional methods. After SCI in rats, PPy/I promotes functional recovery. Therefore, the purpose of this study was to increase the beneficial effects of both strategies and identify which genes activate PPy/I when applied alone or in combination with a mixed scheme of RB by swimming and enriched environment (SW/EE) in rats with SCI. Methods: Microarray analysis was performed to identify mechanisms of action underlying the effects of PPy/I and PPy/I+SW/EE on motor function recovery as evaluated by the BBB scale. Results: Results showed robust upregulation by PPy/I in genes related to the developmental process, biogenesis, synapse, and synaptic vesicle trafficking. In addition, PPy/I+SW/EE increased the expression of genes related to proliferation, biogenesis, cell development, morphogenesis, cell differentiation, neurogenesis, neuron development, and synapse formation processes. Immunofluorescence analysis showed the expression of ß-III tubulin in all groups, a decreased expression of caspase-3 in the PPy/I group and GFAP in the PPy/I+SW/EE group (p < 0.05). Better preservation of nerve tissue was observed in PPy/I and PPy/SW/EE groups (p < 0.05). In the BBB scale, the control group scored 1.72 ± 0.41, animals with PPy/I treatment scored 4.23 ± 0.33, and those with PPy/I+SW/EE scored 9.13 ± 0.43 1 month after follow-up. Conclusion: Thus, PPy/I+SW/EE could represent a therapeutic alternative for motor function recovery after SCI.

14.
Heliyon ; 9(4): e14687, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37009237

RESUMEN

Failure of therapeutic strategies for the management and recovery from traumatic spinal cord injury (SCI) is a serious concern. Dapsone (DDS) has been reported as a neuroprotective drug after SCI, although the phase after SC damage (acute or chronic) of its major impact on functional recovery has yet to be defined. Here, we evaluated DDS acute-phase anti-inflammatory effects and their impact on early functional recovery, one week after moderate SCI, and late functional recovery, 7 weeks thereafter. Female Wistar rats were randomly assigned to each of five experimental groups: sham group; four groups of rats with SCI, treated with DDS (0, 12.5, 25.0, and 37.5 mg/kg ip), starting 3 h after injury. Plasma levels of GRO/KC, and the number of neutrophils and macrophages in cell suspensions from tissue taken at the site of injury were measured as inflammation biomarkers. Hindlimb motor function of injured rats given DDS 12.5 and 25.0 mg/kg daily for 8 weeks was evaluated on the BBB open-field ordinal scale. Six hours after injury all DDS doses decreased GRO/KC plasma levels; 24 h after injury, neutrophil numbers decreased with DDS doses of 25.0 and 37.5 mg/kg; macrophage numbers decreased only at the 37.5 mg/kg dose. In the acute phase, functional recovery was dose-dependent. Final recovery scores were 57.5 and 106.2% above the DDS-vehicle treated control group, respectively. In conclusion, the acute phase dose-dependent anti-inflammatory effects of DDS impacted early motor function recovery affecting final recovery at the end of the study.

15.
Psychopharmacology (Berl) ; 240(6): 1221-1234, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37086286

RESUMEN

RATIONALE: Dyskinesias induced by L-3,4-dihydroxyphenylalanine, L-Dopa (LIDs), are the major complication in the pharmacological treatment of Parkinson's disease. LIDs induce overactivity of the glutamatergic cortico-striatal projections, and drugs that reduce glutamatergic overactivity exert antidyskinetic actions. Chronic administration of immepip, agonist at histamine H3 receptors (H3R), reduces LIDs and diminishes GABA and glutamate content in striatal dialysates (Avila-Luna et al., Psychopharmacology 236: 1937-1948, 2019). OBJECTIVES AND METHODS: In rats unilaterally lesioned with 6-hydroxydopamine in the substantia nigra pars compacta (SNc), we examined whether the chronic administration of immepip and their withdrawal modify LIDs, the effect of L-Dopa on glutamate and GABA content, and mRNA levels of dopamine D1 receptors (D1Rs) and H3Rs in the cerebral cortex and striatum. RESULTS: The administration of L-Dopa for 21 days induced LIDs. This effect was accompanied by increased GABA and glutamate levels in the cerebral cortex ipsi and contralateral to the lesioned SNc, and immepip administration prevented (GABA) or reduced (glutamate) these actions. In the striatum, GABA content increased in the ipsilateral nucleus, an effect prevented by immepip. L-Dopa administration had no significant effects on striatal glutamate levels. In lesioned and L-Dopa-treated animals, D1R mRNA decreased in the ipsilateral striatum, an effect prevented by immepip administration. CONCLUSIONS: Our results indicate that chronic H3R activation reduces LIDs and the overactivity of glutamatergic cortico-striatal projections, providing further evidence for an interaction between D1Rs and H3Rs in the cortex and striatum under normal and pathological conditions.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Ratas , Masculino , Animales , Levodopa/efectos adversos , Dopamina/metabolismo , Oxidopamina/toxicidad , Ácido Glutámico/metabolismo , Cuerpo Estriado , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Corteza Cerebral/metabolismo , ARN Mensajero/metabolismo
16.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(2): 117-126, Mar.-Apr. 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1439560

RESUMEN

Objective: The clinical trajectories of patients with psychotic disorders have divergent outcomes, which may result in part from glutathione (GSH)-related high-risk genotypes. We aimed to determine pharmacokinetics of clozapine, GSH levels, GSH peroxidase (GPx) activity, gene variants involved in the synthesis and metabolism of GSH, and their association with psychotic disorders in Mexican patients on clozapine monotherapy and controls. Methods: The sample included 75 patients with psychotic disorders on clozapine therapy and 40 paired healthy controls. Plasma clozapine/N-desmethylclozapine, GSH concentrations, and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1, and GSTM1. Clinical, molecular and biochemical data were analyzed with a logistic regression model. Results: GSH levels were significantly reduced and, conversely, GPx activity was higher among patients than controls. GCLC_GAG-7/9 genotype (OR = 4.3, 95%CI = 1.40-14.31, p = 0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR = 6.09, 95%CI = 1.93-22.59, p = 0.003) were found to be risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or metabolic ratio. Conclusions: GCLC variants were associated with the oxidative stress profile of patients with psychotic disorders, raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.

17.
Brain Res ; 1803: 148227, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36592802

RESUMEN

BACKGROUND: Development of effective drugs for epilepsy are needed, as nearly 30 % of epileptic patients, are resistant to current treatments. This study is aimed to characterize the anticonvulsant effect of dapsone (DDS), in the kainic acid (KA)-induced Status Epilepticus (SE) by recording the brain metabolic activity with an [18F]FDG-PET analysis. METHODS: Wistar rats received KA (10 mg/kg, i.p., single dose) to produce sustained seizures. [18F]FDG-PET and electroencephalographic (EEG) studies were then performed. DDS or vehicle were administered 30 min before KA. [18F]FDG uptake and EEG were evaluated at baseline, 2 and 25 h after KA injection. Likewise, caspase-8, 3 hippocampal activities and Fluoro-Jade B neuronal degeneration and Hematoxylin-eosin staining were measured 25 h after KA. RESULTS: PET data evaluated at 2 h showed hyper-uptake of [18F]FDG in the control group, which was decreased by DDS. At 25 h, hypo-uptake was observed in the control group and higher values due to DDS effect. EEG spectral power was increased 2 h after KA administration in the control group during the generalized tonic-clonic seizures, which was reversed by DDS, correlated with [18F]FDG-PET uptake changes. The values of caspases-8 activity decreased 48 and 43 % vs control group in the groups treated with DDS (12.5 y 25 mg/kg respectively), likewise; caspase-3 activity diminished by 57 and 53 %. Fewer degenerated neurons were observed due to DDS treatments. CONCLUSIONS: This study pinpoints the anticonvulsant therapeutic potential of DDS. Given its safety and effectiveness, DDS may be a viable alternative for patients with drug-resistant epilepsy.


Asunto(s)
Epilepsia , Estado Epiléptico , Ratas , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Ácido Kaínico/farmacología , Fluorodesoxiglucosa F18/metabolismo , Dapsona/farmacología , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Convulsiones/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo
18.
Rheumatol Int ; 43(4): 757-762, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635578

RESUMEN

Fibromyalgia is characterised by widespread musculoskeletal pain, which may present with fatigue, depression, anxiety, sleep and cognitive disturbances. It is the second most prevalent rheumatic disease. An accurate diagnosis is challenging, since its symptoms may resemble diverse conditions such as carpal tunnel syndrome, Raynaud syndrome, Sjögren syndrome, amongst others. Neuropathic pain and autonomic dysfunction in fibromyalgia suggest the involvement of the nervous system. Ion channels, neurotransmitters and neuromodulators may play a role. Small fibre neuropathy (SFN) may also cause chronic widespread pain. SFN may occur in 50% of fibromyalgia patients, but its role in the disease is unknown. Despite several efforts to synthesise the evidence on the mechanisms for pain in fibromyalgia, there are few studies applying an integrative perspective of neurochemical, immunological, and neuroanatomical characteristics, and their relevance to the disease. This protocol aims to clarify the mechanisms of the central and peripheral nervous system associated with pain in fibromyalgia. We will retrieve published studies from Web of Science, MEDLINE, Scopus, EBSCOhost, Ovid and Google Scholar. All clinical studies or experimental models of fibromyalgia reporting imaging, neurophysiological, anatomical, structural, neurochemical, or immunological characteristics of the central or peripheral nervous systems associated with pain will be included. Exclusion criteria will eliminate studies evaluating pain without a standardised measure, studies written in languages different from Spanish or English that could not be appropriately translated, and studies whose full-text files could not be retrieved after all efforts made. A narrative synthesis will be performed.


Asunto(s)
Dolor Crónico , Fibromialgia , Neuralgia , Enfermedades Reumáticas , Humanos , Fibromialgia/diagnóstico , Dolor Crónico/etiología
19.
Braz J Psychiatry ; 45(2): 117-126, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318479

RESUMEN

OBJECTIVE: The clinical trajectories of patients with psychotic disorders have divergent outcomes, which may result in part from glutathione (GSH)-related high-risk genotypes. We aimed to determine pharmacokinetics of clozapine, GSH levels, GSH peroxidase (GPx) activity, gene variants involved in the synthesis and metabolism of GSH, and their association with psychotic disorders in Mexican patients on clozapine monotherapy and controls. METHODS: The sample included 75 patients with psychotic disorders on clozapine therapy and 40 paired healthy controls. Plasma clozapine/N-desmethylclozapine, GSH concentrations, and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1, and GSTM1. Clinical, molecular and biochemical data were analyzed with a logistic regression model. RESULTS: GSH levels were significantly reduced and, conversely, GPx activity was higher in PD patients compared to controls. GCLC_GAG-7/9 genotype (OR=4.3, CI95=1.40-14.31, p=0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR=6.09, CI95=1.93-22.59, p=0.003) were found as risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or to metabolic ratio. CONCLUSIONS: GCLC variants were associated with the oxidative stress profile of PD patients raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.


Asunto(s)
Clozapina , Trastornos Psicóticos , Humanos , Polimorfismo Genético , Clozapina/uso terapéutico , Variaciones en el Número de Copia de ADN , Genotipo , Estrés Oxidativo/genética , Glutatión/genética , Glutatión/metabolismo , Antioxidantes , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles
20.
Neural Regen Res ; 18(4): 875-880, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36204857

RESUMEN

Norepinephrine plays an important role in motor functional recovery after a brain injury caused by ferrous chloride. Inhibition of norepinephrine release by clonidine is correlated with motor deficits after motor cortex injury. The aim of this study was to analyze the role of α2-adrenergic receptors in the restoration of motor deficits in recovering rats after brain damage. The rats were randomly assigned to the sham and injury groups and then treated with the following pharmacological agents at 3 hours before and 8 hours, 3 days, and 20 days after ferrous chloride-induced cortical injury: saline, clonidine, efaroxan (a selective antagonist of α2-adrenergic receptors) and clonidine + efaroxan. The sensorimotor score, the immunohistochemical staining for α2A-adrenergic receptors, and norepinephrine levels were evaluated. Eight hours post-injury, the sensorimotor score and norepinephrine levels in the locus coeruleus of the injured rats decreased, and these effects were maintained 3 days post-injury. However, 20 days later, clonidine administration diminished norepinephrine levels in the pons compared with the sham group. This effect was accompanied by sensorimotor deficits. These effects were blocked by efaroxan. In conclusion, an increase in α2-adrenergic receptor levels was observed after injury. Clonidine restores motor deficits in rats recovering from cortical injury, an effect that was prevented by efaroxan. The underlying mechanisms involve the stimulation of hypersensitive α2-adrenergic receptors and inhibition of norepinephrine activity in the locus coeruleus. The results of this study suggest that α2 receptor agonists might restore deficits or impede rehabilitation in patients with brain injury, and therefore pharmacological therapies need to be prescribed cautiously to these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...