Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(43): eabq0952, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306358

RESUMEN

The Na-K-2Cl cotransporter-1 (NKCC1) is an electroneutral Na+-dependent transporter responsible for simultaneously translocating Na+, K+, and Cl- ions into cells. In human tissue, NKCC1 plays a critical role in regulating cytoplasmic volume, fluid intake, chloride homeostasis, and cell polarity. Here, we report four structures of human NKCC1 (hNKCC1), both in the absence and presence of loop diuretic (bumetanide or furosemide), using single-particle cryo-electron microscopy. These structures allow us to directly observe various novel conformations of the hNKCC1 dimer. They also reveal two drug-binding sites located at the transmembrane and cytosolic carboxyl-terminal domains, respectively. Together, our findings enable us to delineate an inhibition mechanism that involves a coupled movement between the cytosolic and transmembrane domains of hNKCC1.

2.
J Biol Chem ; 289(42): 29273-84, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25164821

RESUMEN

The Ste20-related kinase SPAK regulates sodium, potassium, and chloride transport in a variety of tissues. Recently, SPAK fragments, which lack the catalytic domain and are inhibitory to Na(+) transporters, have been detected in kidney. It has been hypothesized that the fragments originate from alternative translation start sites, but their precise origin is unknown. Here, we demonstrate that kidney lysate possesses proteolytic cleavage activity toward SPAK. Ion exchange and size exclusion chromatography combined with mass spectrometry identified the protease as aspartyl aminopeptidase. The presence of the protease was verified in the active fractions, and recombinant aspartyl aminopeptidase recapitulated the cleavage pattern observed with kidney lysate. Identification of the sites of cleavage by mass spectrometry allowed us to test the function of the smaller fragments and demonstrate their inhibitory action toward the Na(+)-K(+)-2Cl(-) cotransporter, NKCC2.


Asunto(s)
Glutamil Aminopeptidasa/metabolismo , Riñón/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Presión Sanguínea , Clonación Molecular , Humanos , Médula Renal/metabolismo , Espectrometría de Masas , Metaloproteasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Oocitos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Sodio/metabolismo , Xenopus laevis
3.
J Biol Chem ; 289(25): 17680-8, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24811174

RESUMEN

Na(+)-dependent chloride cotransporters (NKCC1, NKCC2, and NCC) are activated by phosphorylation to play critical roles in diverse physiological responses, including renal salt balance, hearing, epithelial fluid secretion, and volume regulation. Serine threonine kinase WNK4 (With No K = lysine member 4) and members of the Ste20 kinase family, namely SPAK and OSR1 (Ste20-related proline/alanine-rich kinase, Oxidative stress-responsive kinase) govern phosphorylation. According to present understanding, WNK4 phosphorylates key residues within SPAK/OSR1 leading to kinase activation, allowing SPAK/OSR1 to bind to and phosphorylate NKCC1, NKCC2, and NCC. Recently, the calcium-binding protein 39 (Cab39) has emerged as a binding partner and enhancer of SPAK/OSR1 activity, facilitating kinase autoactivation and promoting phosphorylation of the cotransporters. In the present study, we provide evidence showing that Cab39 differentially interacts with WNK4 and SPAK/OSR1 to switch the classic two kinase cascade into a signal kinase transduction mechanism. We found that WNK4 in association with Cab39 activates NKCC1 in a SPAK/OSR1-independent manner. We discovered that WNK4 possesses a domain that bears close resemblance to the SPAK/OSR1 C-terminal CCT/PF2 domain, which is required for physical interaction between the Ste20 kinases and the Na(+)-driven chloride cotransporters. Modeling, yeast two-hybrid, and functional data reveal that this PF2-like domain located downstream of the catalytic domain in WNK4 promotes the direct interaction between the kinase and NKCC1. We conclude that in addition to SPAK and OSR1, WNK4 is able to anchor itself to the N-terminal domain of NKCC1 and to promote cotransporter activation.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Ratones , Modelos Biológicos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Ratas , Transducción de Señal/fisiología , Miembro 2 de la Familia de Transportadores de Soluto 12/genética
4.
Cell Physiol Biochem ; 28(6): 1219-30, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22179010

RESUMEN

Mammalian Ste20-related kinases modulate salt transport and ion homeostasis through physical interaction and phosphorylation of cation-chloride cotransporters. Identification of a sea urchin (Strongylocentrotus purpuratus) ortholog of the mouse Oxidative Stress Response 1 (OSR1) kinase prompted the cloning and testing of the functional effect of a non-mammalian kinase on a mammalian cotransporter. Heterologous expression of sea urchin OSR1 (suOSR1) cRNA with mouse WNK4 cRNA and mouse NKCC1 cRNA in Xenopus laevisoocytes activated the cotransporter indicating evolutionary conservation of the WNK4-OSR1-NKCC signaling pathway. However, expression of a suOSR1 kinase mutated to confer constitutive activity did not result in stimulation of the cotransporter. Using a chimeric strategy, we determined that both the mutated catalytic and regulatory domains of the suOSR1 kinase were functional, suggesting that the tertiary structure of full-length mutated suOSR1 must somehow adopt an inactive conformation. In order to identify the regions or residues which lock the suOSR1 kinase in an inactive conformation, we created and tested several additional chimeras by replacing specific portions of the suOSR1 gene with complimentary mouse OSR1 sequences. Co-expression of these chimeras identified several regions in both the catalytic and regulatory domain of suOSR1 which possibly prevented the kinase from acquiring an active conformation. Interestingly, non-functional suOSR1 chimeras were able to activate mouse NKCC1 when a mouse scaffolding protein, Cab39, was co-expressed in frog oocytes. Sea urchin/mouse OSR1 chimeras and kinase stabilization with mouse Cab39 has provided some novel insights into the activation mechanism of the Ste20-related kinases.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Dominio Catalítico , Activación Enzimática , Femenino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Erizos de Mar/enzimología , Transducción de Señal , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12 , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...