Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Cell Biol ; 33(1): 30-47, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35729039

RESUMEN

The J-domain proteins (JDP) form the largest protein family among cellular chaperones. In cooperation with the Hsp70 chaperone system, these co-chaperones orchestrate a plethora of distinct functions, including those that help maintain cellular proteostasis and development. JDPs evolved largely through the fusion of a J-domain with other protein subdomains. The highly conserved J-domain facilitates the binding and activation of Hsp70s. How JDPs (re)wire Hsp70 chaperone circuits and promote functional diversity remains insufficiently explained. Here, we discuss recent advances in our understanding of the JDP family with a focus on the regulation built around J-domains to ensure correct pairing and assembly of JDP-Hsp70 machineries that operate on different clientele under various cellular growth conditions.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Proteostasis , Humanos , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Unión Proteica
2.
Sci Adv ; 7(41): eabj2854, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34613769

RESUMEN

Three-component ParABS systems are widely distributed factors for plasmid partitioning and chromosome segregation in bacteria. ParB acts as adaptor protein between the 16­base pair centromeric parS DNA sequences and the DNA segregation proteins ParA and Smc (structural maintenance of chromosomes). Upon cytidine triphosphate (CTP) and parS DNA binding, ParB dimers form DNA clamps that spread onto parS-flanking DNA by sliding, thus assembling the so-called partition complex. We show here that CTP hydrolysis is essential for efficient chromosome segregation by ParABS but largely dispensable for Smc recruitment. Our results suggest that CTP hydrolysis contributes to partition complex assembly via two mechanisms. It promotes ParB unloading from DNA to limit the extent of ParB spreading, and it recycles off-target ParB clamps to allow for parS retargeting, together superconcentrating ParB near parS. We also propose a model for clamp closure involving a steric clash when binding ParB protomers to opposing parS half sites.

3.
Phys Rev E ; 97(3-1): 032308, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29776104

RESUMEN

The containment of epidemic spreading is a major challenge in science. Vaccination, whenever available, is the best way to prevent the spreading, because it eventually immunizes individuals. However, vaccines are not perfect, and total immunization is not guaranteed. Imperfect immunization has driven the emergence of antivaccine movements that totally alter the predictions about the epidemic incidence. Here, we propose a mathematically solvable mean-field vaccination model to mimic the spontaneous adoption of vaccines against influenzalike diseases and the expected epidemic incidence. The results are in agreement with extensive Monte Carlo simulations of the epidemics and vaccination coevolutionary processes. Interestingly, the results reveal a nonmonotonic behavior on the vaccination coverage that increases with the imperfection of the vaccine and after decreases. This apparent counterintuitive behavior is analyzed and understood from stability principles of the proposed mathematical model.


Asunto(s)
Análisis Costo-Beneficio , Aceptación de la Atención de Salud/estadística & datos numéricos , Vacunación/economía , Susceptibilidad a Enfermedades
4.
Biophys J ; 113(2): 362-370, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28746847

RESUMEN

The 70 kDa heat shock protein Hsp70 has several essential functions in living systems, such as protecting cells against protein aggregation, assisting protein folding, remodeling protein complexes, and driving translocation into organelles. These functions require high affinity for nonspecific amino acid sequences that are ubiquitous in proteins. It has been recently shown that this high affinity, called ultra-affinity, depends on a process driven out of equilibrium by ATP hydrolysis. Here, we establish the thermodynamic bounds for ultra-affinity, and further show that the same reaction scheme can in principle be used both to strengthen and to weaken affinities (leading in this case to infra-affinity). We show that cofactors are essential to achieve affinity beyond the equilibrium range. Finally, biological implications are discussed.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Moleculares , Termodinámica , Adenosina Difosfato/química , Adenosina Trifosfato/química , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas HSP70 de Choque Térmico/química , Hidrólisis , Modelos Químicos , Unión Proteica/fisiología , Pliegue de Proteína
5.
Cell Stress Chaperones ; 20(4): 605-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25847399

RESUMEN

Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 100 times the ensuing relative levels of HSP proteins. We used here high-throughput quantitative proteomics and targeted mRNA quantification to estimate in human cell cultures the mass and copy numbers of the most abundant proteins that become significantly accumulated, depleted, or unchanged during and following 4 h at 41 °C, which we define as mild heat shock. This treatment caused a minor across-the-board mass loss in many housekeeping proteins, which was matched by a mass gain in a few HSPs, predominantly cytosolic HSPCs (HSP90s) and HSPA8 (HSC70). As the mRNAs of the heat-depleted proteins were not significantly degraded and less ribosomes were recruited by excess new HSP mRNAs, the mild depletion of the many housekeeping proteins during heat shock was attributed to their slower replenishment. This differential protein expression pattern was reproduced by isothermal treatments with Hsp90 inhibitors. Unexpectedly, heat-treated cells accumulated 55 times more new molecules of HSPA8 (HSC70) than of the acknowledged heat-inducible isoform HSPA1A (HSP70), implying that when expressed as net copy number differences, rather than as mere "fold change" ratios, new biologically relevant information can be extracted from quantitative proteomic data. Raw data are available via ProteomeXchange with identifier PXD001666.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteómica , Benzoquinonas/toxicidad , Cromatografía Líquida de Alta Presión , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Marcaje Isotópico , Células Jurkat , Lactamas Macrocíclicas/toxicidad , Espectrometría de Masas , ARN Mensajero/metabolismo , Temperatura , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...