RESUMEN
Antimicrobial resistance (AMR) is one of the biggest threats in modern times. It was estimated that in 2019, 1.27 million deaths occurred around the globe due to AMR. Methicillin-resistant Staphylococcus aureus (MRSA) strains, a pathogen considered of high priority by the World Health Organization, have proven to be resistant to most of the actual antimicrobial treatments. Therefore, new treatments are required to be able to manage this increasing threat. Under this perspective, an important metabolic pathway for MRSA survival, and absent in mammals, is the shikimate pathway, which is involved in the biosynthesis of chorismate, an intermediate for the synthesis of aromatic amino acids, folates, and ubiquinone. Therefore, the enzymes of this route have been considered good targets to design novel antibiotics. The fifth step of the route is performed by shikimate kinase (SK). In this study, an in-house chemical library of 170 benzimidazole derivatives was screened against MRSA shikimate kinase (SaSK). This effort led to the identification of the first SaSK inhibitors, and the two inhibitors with the greatest inhibition activity (C1 and C2) were characterized. Kinetic studies showed that both compounds were competitive inhibitors with respect to ATP and non-competitive for shikimate. Structural analysis through molecular docking and molecular dynamics simulations indicated that both inhibitors interacted with ARG113, an important residue involved in ATP binding, and formed stable complexes during the simulation period. Biological activity evaluation showed that both compounds were able to inhibit the growth of a MRSA strain. Mitochondrial assays showed that both compounds modify the activity of electron transport chain complexes. Finally, ADMETox predictions suggested that, in general, C1 and C2 can be considered as potential drug candidates. Therefore, the benzimidazole derivatives reported here are the first SaSK inhibitors, representing a promising scaffold and a guide to design new drugs against MRSA.
Asunto(s)
Bencimidazoles , Staphylococcus aureus Resistente a Meticilina , Simulación del Acoplamiento Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol) , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Bencimidazoles/farmacología , Bencimidazoles/química , Cinética , Antibacterianos/farmacología , Antibacterianos/química , Simulación de Dinámica Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/químicaRESUMEN
Bacteria resistance to antibiotics is a concerning global health problem; in this context, methicillin-resistant Staphylococcus aureus (MRSA) is considered as a high priority by the World Health Organization. Furthermore, patients with a positive result for COVID-19 received early antibiotic treatment, a fact that potentially encourages the increase in antibiotic resistance. Therefore, there is an urgency to develop new drugs with molecular mechanisms different from those of the actual treatments. In this context, enzymes from the shikimate pathway, a route absent in humans, such as dehydroquinate dehydratase (DHQD), are considered good targets. In this work, a computer-aided drug design strategy, which involved exhaustive virtual screening and molecular dynamics simulations with MM-PBSA analysis, as well as an in silico ADMETox characterization, was performed to find potential noncovalent inhibitors of DHQD from MRSA (SaDHQD). After filtering the 997 million compounds from the ZINC database, 6700 compounds were submitted to an exhaustive virtual screening protocol. From these data, four molecules were selected and characterized (ZINC000005753647 (1), ZINC000001720488 (2), ZINC000082049768 (3), and ZINC000644149506 (4)). The results indicate that the four potential inhibitors interacted with residues important for substrate binding and catalysis, with an estimated binding free energy like that of the enzyme's substrate. Their ADMETox-predicted properties suggest that all of them support the structural characteristics to be considered good candidates. Therefore, the four compounds reported here are excellent option to be considered for future in vitro studies to design new SaDHQD noncovalent inhibitors and contribute to the search for new drugs against MRSA.
RESUMEN
Methicillin-resistant Staphylococcus aureus (MRSA) is an important threat as it causes serious hospital and community acquired infections with deathly outcomes oftentimes, therefore, development of new treatments against this bacterium is a priority. Shikimate kinase, an enzyme in the shikimate pathway, is considered a good target for developing antimicrobial drugs; this is given because of its pathway, which is essential in bacteria whereas it is absent in mammals. In this work, a computer-assisted drug design strategy was used to report the first potentials inhibitors for Shikimate kinase from methicillin-resistant Staphylococcus aureus (SaSK), employing approximately 5 million compounds from ZINC15 database. Diverse filtering criteria, related to druglike characteristics and virtual docking screening in the shikimate binding site, were performed to select structurally diverse potential inhibitors from SaSK. Molecular dynamics simulations were performed to elucidate the dynamic behavior of each SaSK-ligand complex. The potential inhibitors formed important interactions with residues that are crucial for enzyme catalysis, such as Asp37, Arg61, Gly82, and Arg138. Therefore, the compounds reported provide valuable information and can be seen as the first step toward developing SaSK inhibitors in the search of new drugs against MRSA.
Asunto(s)
Antibacterianos/farmacología , Diseño Asistido por Computadora , Inhibidores Enzimáticos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Antibacterianos/química , Diseño de Fármacos , Inhibidores Enzimáticos/química , Staphylococcus aureus Resistente a Meticilina/enzimología , Modelos Moleculares , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
BACKGROUND: Nowadays, malaria is still one of the most important and lethal diseases worldwide, causing 445,000 deaths in a year. Due to the actual treatment resistance, there is an emergency to find new drugs. OBJECTIVE: The aim of this work was to find potential inhibitors of phosphoglycerate mutase 1 from P. falciparum. RESULTS: Through virtual screening of a chemical library of 15,123 small molecules, analyzed by two programs, four potential inhibitors of phosphoglycerate mutase 1 from P. falciparum were found: ZINC64219552, ZINC39095354, ZINC04593310, and ZINC04343691; their binding energies in SP mode were -7.3, -7.41, -7.4, and -7.18 kcal/mol respectively. Molecular dynamic analysis revealed that these molecules interact with residues important for enzyme catalysis and molecule ZINC04343691 provoked the highest structural changes. Physiochemical and toxicological profiles evaluation of these inhibitors with ADME-Tox method suggested that they can be considered as potential drugs. Furthermore, analysis of human PGAM-B suggested that these molecules could be selective for the parasitic enzyme. CONCLUSION: The compounds reported here are the first selective potential inhibitors of phosphoglycerate mutase 1 from P. falciparum, and can serve as a starting point in the search of a new chemotherapy against malaria.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Fosfoglicerato Mutasa/antagonistas & inhibidores , Plasmodium falciparum/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Programas Informáticos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ligandos , Fosfoglicerato Mutasa/metabolismo , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria.