Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(10): e1011522, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37862386

RESUMEN

Gene expression is the synthesis of proteins from the information encoded on DNA. One of the two main steps of gene expression is the translation of messenger RNA (mRNA) into polypeptide sequences of amino acids. Here, by taking into account mRNA degradation, we model the motion of ribosomes along mRNA with a ballistic model where particles advance along a filament without excluded volume interactions. Unidirectional models of transport have previously been used to fit the average density of ribosomes obtained by the experimental ribo-sequencing (Ribo-seq) technique in order to obtain the kinetic rates. The degradation rate is not, however, accounted for and experimental data from different experiments are needed to have enough parameters for the fit. Here, we propose an entirely novel experimental setup and theoretical framework consisting in splitting the mRNAs into categories depending on the number of ribosomes from one to four. We solve analytically the ballistic model for a fixed number of ribosomes per mRNA, study the different regimes of degradation, and propose a criterion for the quality of the inverse fit. The proposed method provides a high sensitivity to the mRNA degradation rate. The additional equations coming from using the monosome (single ribosome) and polysome (arbitrary number) ribo-seq profiles enable us to determine all the kinetic rates in terms of the experimentally accessible mRNA degradation rate.


Asunto(s)
Biosíntesis de Proteínas , Perfilado de Ribosomas , ARN Mensajero/metabolismo , Biosíntesis de Proteínas/genética , Ribosomas/genética , Ribosomas/metabolismo , Proteínas/metabolismo
2.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010504

RESUMEN

MOTIVATION: Seeking probabilistic motifs in a sequence is a common task to annotate putative transcription factor binding sites or other RNA/DNA binding sites. Useful motif representations include position weight matrices (PWMs), dinucleotide PWMs (di-PWMs), and hidden Markov models (HMMs). Dinucleotide PWMs not only combine the simplicity of PWMs-a matrix form and a cumulative scoring function-but also incorporate dependency between adjacent positions in the motif (unlike PWMs which disregard any dependency). For instance to represent binding sites, the HOCOMOCO database provides di-PWM motifs derived from experimental data. Currently, two programs, SPRy-SARUS and MOODS, can search for occurrences of di-PWMs in sequences. RESULTS: We propose a Python package called dipwmsearch, which provides an original and efficient algorithm for this task (it first enumerates matching words for the di-PWM, and then searches these all at once in the sequence, even if the latter contains IUPAC codes). The user benefits from an easy installation via Pypi or conda, a comprehensive documentation, and executable scripts that facilitate the use of di-PWMs. AVAILABILITY AND IMPLEMENTATION: dipwmsearch is available at https://pypi.org/project/dipwmsearch/ and https://gite.lirmm.fr/rivals/dipwmsearch/ under Cecill license.


Asunto(s)
Algoritmos , Biología Computacional , Sitios de Unión , Unión Proteica , Posición Específica de Matrices de Puntuación
3.
Nat Commun ; 13(1): 173, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013311

RESUMEN

Mechanisms of drug-tolerance remain poorly understood and have been linked to genomic but also to non-genomic processes. 5-fluorouracil (5-FU), the most widely used chemotherapy in oncology is associated with resistance. While prescribed as an inhibitor of DNA replication, 5-FU alters all RNA pathways. Here, we show that 5-FU treatment leads to the production of fluorinated ribosomes exhibiting altered translational activities. 5-FU is incorporated into ribosomal RNAs of mature ribosomes in cancer cell lines, colorectal xenografts, and human tumors. Fluorinated ribosomes appear to be functional, yet, they display a selective translational activity towards mRNAs depending on the nature of their 5'-untranslated region. As a result, we find that sustained translation of IGF-1R mRNA, which encodes one of the most potent cell survival effectors, promotes the survival of 5-FU-treated colorectal cancer cells. Altogether, our results demonstrate that "man-made" fluorinated ribosomes favor the drug-tolerant cellular phenotype by promoting translation of survival genes.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , ADN de Neoplasias/genética , Tolerancia a Medicamentos/genética , Fluorouracilo/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Receptor IGF Tipo 1/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Replicación del ADN , ADN de Neoplasias/metabolismo , Resistencia a Antineoplásicos/genética , Células HCT116 , Halogenación , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/genética , Ribosomas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Commun ; 12(1): 1716, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741917

RESUMEN

Cancer stem cells (CSCs) are a small but critical cell population for cancer biology since they display inherent resistance to standard therapies and give rise to metastases. Despite accruing evidence establishing a link between deregulation of epitranscriptome-related players and tumorigenic process, the role of messenger RNA (mRNA) modifications in the regulation of CSC properties remains poorly understood. Here, we show that the cytoplasmic pool of fat mass and obesity-associated protein (FTO) impedes CSC abilities in colorectal cancer through its N6,2'-O-dimethyladenosine (m6Am) demethylase activity. While m6Am is strategically located next to the m7G-mRNA cap, its biological function is not well understood and has not been addressed in cancer. Low FTO expression in patient-derived cell lines elevates m6Am level in mRNA which results in enhanced in vivo tumorigenicity and chemoresistance. Inhibition of the nuclear m6Am methyltransferase, PCIF1/CAPAM, fully reverses this phenotype, stressing the role of m6Am modification in stem-like properties acquisition. FTO-mediated regulation of m6Am marking constitutes a reversible pathway controlling CSC abilities. Altogether, our findings bring to light the first biological function of the m6Am modification and its potential adverse consequences for colorectal cancer management.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Neoplasias Colorrectales/metabolismo , Citoplasma/metabolismo , Desmetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo
5.
Ann Bot ; 119(5): 931-943, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065923

RESUMEN

Background and aims: Plant soluble sugars, as main components of primary metabolism, are thought to be implicated in defence against pathogenic fungi. However, the function of sucrose and hexoses remains unclear. This study aimed to identify robust patterns in the dynamics of soluble sugars in sink tissues of tomato plants during the course of infection by the necrotrophic fungus Botrytis cinerea . Distinct roles for glucose and fructose in defence against B. cinerea were hypothesized. Methods: We examined sugar contents and defence hormonal markers in tomato stem tissues before and after infection by B. cinerea , in a range of abiotic environments created by various nitrogen and water supplies. Key Results: Limited nitrogen or water supplies increased tomato stem susceptibility to B. cinerea . Glucose and fructose contents of tissues surrounding infection sites evolved differently after inoculation. The fructose content never decreased after inoculation with B. cinerea , while that of glucose showed either positive or negative variation, depending on the abiotic environment. An increase in the relative fructose content (defined as the proportion of fructose in the soluble sugar pool) was observed in the absence of glucose accumulation and was associated with lower susceptibility. A lower expression of the salicylic acid marker PR1a , and a lower repression of a jasmonate marker COI1 were associated with reduced susceptibility. Accordingly, COI1 expression was positively correlated with the relative fructose contents 7 d after infection. Conclusions: Small variations of fructose content among the sugar pool are unlikely to affect intrinsic pathogen growth. Our results highlight distinct use of host glucose and fructose after infection by B. cinerea and suggest strongly that adjustment of the relative fructose content is required for enhanced plant defence.


Asunto(s)
Botrytis/fisiología , Fructosa/metabolismo , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Glucosa/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología
6.
Front Plant Sci ; 7: 1679, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27891137

RESUMEN

Analysis of the fast kinetics of the induction curve of maximal fluorescence represents a relatively recent development for chlorophyll a fluorescence measurements. The parameters of the so-called JIP-test are exploited by an increasingly large community of users to assess plant stress and its consequences. We provide here evidence that these parameters are capable to distinguish between stresses of different natures or intensities, and between stressed plants of different genetic background or at different developmental stages at the time of stress. It is, however, important to keep in mind that the JIP-test is inherently limited in scope, that it is based on assumptions which are not fully validated and that precautions must be taken to ensure that measurements are meaningful. Recent advances suggest that some improvements could be implemented to increase the reliability of measurements and the pertinence of the parameters calculated. We moreover advocate for using the JIP-test in combination with other techniques to build comprehensive pictures of plant responses to stress.

7.
J Plant Physiol ; 190: 26-35, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26629612

RESUMEN

Many studies have advocated that water deficit (WD) may exert beneficial effects on fruit quality. However, the fruit response to WD at specific developmental stages was seldom investigated, although different mechanisms could be involved at each stage and lead to different effects on final fruit quality. In the present study, a moderate WD (-60% of water supply compared to control) was applied during each of the three major phases of fruit development, namely cell division (CD), cell expansion (CE) and maturation (MT). Two cocktail tomato (Solanum lycopersicum L.) genotypes were studied, one producing poor quality fruits (LA1420), and the other one producing tasty fruits (PlovdivXXIVa named Plovdiv). Contrasted responses were observed between the two genotypes. For both of them, fruit fresh mass and size were not significantly reduced by WD, whatever the developmental phase affected. Osmotic regulations were likely involved in the CD treatment for LA1420 fruits, which accumulated more sugars (both on a dry and fresh matter basis) and less acids (on a dry matter basis). In the CE treatment, other adaptive strategies involving sugar metabolism and sub-cellular compartmentation were suggested. In contrast, the composition of Plovdiv fruits changed only under the MT treatment, with less sugars, acids and carotenoids compared to control fruits (both on a dry and fresh matter basis). Total ascorbic acid (AsA) was not significantly influenced by treatments in both genotypes. On their whole, results suggest that, depending on genotypes, fruits are sweeter and less acidic under WD, but that the nutritive value related to vitamin and carotenoid contents may be lessened. The sensitivity of each developmental phase highly depends on the genotype. All phases were sensitive to WD for LA1420, but only the ripening phase for Plovdiv. Interestingly, major changes in fruit composition were observed in LA1420 which presents poor fruit quality under control conditions. This suggests the onset of fast adaptive response to WD at the fruit level in this genotype.


Asunto(s)
Desecación , Genotipo , Solanum lycopersicum/fisiología , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Agua/metabolismo
8.
Front Plant Sci ; 6: 1172, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26779213

RESUMEN

Episodes of water deficit (WD) during the crop cycle of tomato may negatively impact plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate WD may induce a plant "memory effect" which is known to stimulate plant acclimation and defenses for upcoming stress episodes. The objective of this study was to analyze the positive and negative impacts of repeated episodes of WD at the plant and fruit levels. Three episodes of WD (-38, -45, and -55% of water supply) followed by three periods of recovery ("WD treatments"), were applied to the eight parents of the Multi-Parent Advanced Generation Inter-Cross population which offers the largest allelic variability observed in tomato. Predawn and midday water potentials, chlorophyll a fluorescence, growth and fruit quality traits [contents in sugars, acids, carotenoids, and ascorbic acid (AsA)] were measured throughout the experiment. Important genotypic variations were observed both at the plant and fruit levels and variations in fruit and leaf traits were found not to be correlated. Overall, the WD treatments were at the origin of important osmotic regulations, reduction of leaf growth, acclimation of photosynthetic functioning, notably through an increase in the chlorophyll content and in the quantum yield of the electron transport flux until PSI acceptors (J 0 (RE1)/J (ABS)). The effects on fruit sugar, acid, carotenoid and AsA contents on a dry matter basis ranged from negative to positive to nil depending on genotypes and stress intensity. Three small fruit size accessions were richer in AsA on a fresh matter basis, due to concentration effects. So, fruit quality was improved under WD mainly through concentration effects. On the whole, two accessions, LA1420 and Criollo appeared as interesting genetic resources, cumulating adaptive traits both at the leaf and fruit levels. Our observations show that the complexity involved in plant responses, when considering a broad range of physiological traits and the variability of genotypic effects, represent a true challenge for upcoming studies aiming at taking advantage of, not just dealing with WD.

9.
J Exp Bot ; 65(15): 4097-117, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24821951

RESUMEN

Extreme climatic events, including drought, are predicted to increase in intensity, frequency, and geographic extent as a consequence of global climate change. In general, to grow crops successfully in the future, growers will need to adapt to less available water and to take better advantage of the positive effects of drought. Fortunately, there are positive effects associated with drought. Drought stimulates the secondary metabolism, thereby potentially increasing plant defences and the concentrations of compounds involved in plant quality, particularly taste and health benefits. The role of drought on the production of secondary metabolites is of paramount importance for fruit crops. However, to manage crops effectively under conditions of limited water supply, for example by applying deficit irrigation, growers must consider not only the impact of drought on productivity but also on how plants manage the primary and secondary metabolisms. This question is obviously complex because during water deficit, trade-offs among productivity, defence, and quality depend upon the intensity, duration, and repetition of events of water deficit. The stage of plant development during the period of water deficit is also crucial, as are the effects of other stressors. In addition, growers must rely on relevant indicators of water status, i.e. parameters involved in the relevant metabolic processes, including those affecting quality. Although many reports on the effects of drought on plant function and crop productivity have been published, these issues have not been reviewed thus far. Here, we provide an up-to-date review of current knowledge of the effects of different forms of drought on fruit quality relative to the primary and secondary metabolisms and their interactions. We also review conventional and less conventional indicators of water status that could be used for monitoring purposes, such as volatile compounds. We focus on fruit crops owing to the importance of secondary metabolism in fruit quality and the importance of fruits in the human diet. The issue of defence is also briefly discussed.


Asunto(s)
Sequías , Frutas/metabolismo , Fitoquímicos/metabolismo , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...