Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643274

RESUMEN

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Enfermedades Mitocondriales , Animales , Humanos , ADN Polimerasa Dirigida por ADN/genética , Pez Cebra/genética , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/patología , Mutación/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética
2.
Cell Death Discov ; 9(1): 441, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057295

RESUMEN

Arrhythmogenic cardiomyopathy (AC) is an inherited disorder characterized by progressive loss of the ventricular myocardium causing life-threatening ventricular arrhythmias, syncope and sudden cardiac death in young and athletes. About 40% of AC cases carry one or more mutations in genes encoding for desmosomal proteins, including Desmoplakin (Dsp). We present here the first stable Dsp knock-out (KO) zebrafish line able to model cardiac alterations and cell signalling dysregulation, characteristic of the AC disease, on which environmental factors and candidate drugs can be tested. Our stable Dsp knock-out (KO) zebrafish line was characterized by cardiac alterations, oedema and bradycardia at larval stages. Histological analysis of mutated adult hearts showed reduced contractile structures and abnormal shape of the ventricle, with thinning of the myocardial layer, vessels dilation and presence of adipocytes within the myocardium. Moreover, TEM analysis revealed "pale", disorganized and delocalized desmosomes. Intensive physical training protocol caused a global worsening of the cardiac phenotype, accelerating the progression of the disease. Of note, we detected a decrease of Wnt/ß-catenin signalling, recently associated with AC pathogenesis, as well as Hippo/YAP-TAZ and TGF-ß pathway dysregulation. Pharmacological treatment of mutated larvae with SB216763, a Wnt/ß-catenin agonist, rescued pathway expression and cardiac abnormalities, stabilizing the heart rhythm. Overall, our Dsp KO zebrafish line recapitulates many AC features observed in human patients, pointing at zebrafish as a suitable system for in vivo analysis of environmental modulators, such as the physical exercise, and the screening of pathway-targeted drugs, especially related to the Wnt/ß-catenin signalling cascade.

3.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628888

RESUMEN

Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and ß-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease's pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies.


Asunto(s)
Distrofia Muscular de Cinturas , Sarcoglicanopatías , Animales , Degradación Asociada con el Retículo Endoplásmico , Pez Cebra/genética , Evaluación Preclínica de Medicamentos , Larva
4.
Front Cell Dev Biol ; 10: 943127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051436

RESUMEN

Foetal Growth Restriction (FGR), previously known as Intrauterine Growth Restriction (IUGR), is an obstetrical condition due to placental insufficiency, affecting yearly about 30 million newborns worldwide. In this work, we aimed to identify and pharmacologically target signalling pathways specifically involved in the FGR condition, focusing on FGR-related cardiovascular phenotypes. The transcriptional profile of human umbilical cords from FGR and control cases was compared with the response to hypoxia of zebrafish (Danio rerio) transgenic lines reporting in vivo the activity of twelve signalling pathways involved in embryonic development. Wnt/ß-catenin and Jak/Stat3 were found as key pathways significantly dysregulated in both human and zebrafish samples. This information was used in a chemical-genetic analysis to test drugs targeting Wnt/ß-catenin and Jak/Stat3 pathways to rescue a set of FGR phenotypes, including growth restriction and cardiovascular modifications. Treatments with the Wnt/ß-catenin agonist SB216763 successfully rescued body dimensions, cardiac shape, and vessel organization in zebrafish FGR models. Our data support the Wnt/ß-catenin pathway as a key FGR marker and a promising target for pharmacological intervention in the FGR condition.

5.
Cell Death Dis ; 12(1): 100, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469036

RESUMEN

The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.


Asunto(s)
Enfermedades Mitocondriales/genética , Compuestos de Amonio Cuaternario/metabolismo , Animales , Modelos Animales de Enfermedad , Fenotipo , Pez Cebra
6.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155735

RESUMEN

Sarcoglycanopathies are rare limb girdle muscular dystrophies, still incurable, even though symptomatic treatments may slow down the disease progression. Most of the disease-causing defects are missense mutations leading to a folding defective protein, promptly removed by the cell's quality control, even if possibly functional. Recently, we repurposed small molecules screened for cystic fibrosis as potential therapeutics in sarcoglycanopathy. Indeed, cystic fibrosis transmembrane regulator (CFTR) correctors successfully recovered the defective sarcoglycan-complex in vitro. Our aim was to test the combined administration of some CFTR correctors with C17, the most effective on sarcoglycans identified so far, and evaluate the stability of the rescued sarcoglycan-complex. We treated differentiated myogenic cells from both sarcoglycanopathy and healthy donors, evaluating the global rescue and the sarcolemma localization of the mutated protein, by biotinylation assays and western blot analyses. We observed the additive/synergistic action of some compounds, gathering the first ideas on possible mechanism/s of action. Our data also suggest that a defective α-sarcoglycan is competent for assembly into the complex that, if helped in cell traffic, can successfully reach the sarcolemma. In conclusion, our results strengthen the idea that CFTR correctors, acting probably as proteostasis modulators, have the potential to progress as therapeutics for sarcoglycanopathies caused by missense mutations.


Asunto(s)
Aminopiridinas/farmacología , Benzodioxoles/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Mutación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Sarcoglicanopatías/tratamiento farmacológico , Sarcoglicanos/metabolismo , Fibrosis Quística , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Combinación de Medicamentos , Células HEK293 , Humanos , Fibras Musculares Esqueléticas/metabolismo , Sarcoglicanopatías/genética , Sarcoglicanopatías/metabolismo , Sarcoglicanopatías/patología , Sarcoglicanos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA