RESUMEN
We present the measurements of individual bound electron g factors of ^{20}Ne^{9+} and ^{22}Ne^{9+} on the relative level of 0.1 parts per billion. The comparison with theory represents the most stringent test of bound-state QED in strong electric fields. A dedicated mass measurement results in m(^{20}Ne)=19.992 440 168 77(9) u, which improves the current literature value by a factor of 18, disagrees by 4 standard deviations, and represents the most precisely measured mass value in atomic mass units. Together, these measurements yield an electron mass on the relative level of 0.1 ppb with m_{e}=5.485 799 090 99(59)×10^{-4} u as well as a factor of seven improved m(^{22}Ne)=21.991 385 098 2(26) u.
RESUMEN
Helium-3 has nowadays become one of the most important candidates for studies in fundamental physics1-3, nuclear and atomic structure4,5, magnetometry and metrology6, as well as chemistry and medicine7,8. In particular, 3He nuclear magnetic resonance (NMR) probes have been proposed as a new standard for absolute magnetometry6,9. This requires a high-accuracy value for the 3He nuclear magnetic moment, which, however, has so far been determined only indirectly and with a relative precision of 12 parts per billon10,11. Here we investigate the 3He+ ground-state hyperfine structure in a Penning trap to directly measure the nuclear g-factor of 3He+ [Formula: see text], the zero-field hyperfine splitting [Formula: see text] Hz and the bound electron g-factor [Formula: see text]. The latter is consistent with our theoretical value [Formula: see text] based on parameters and fundamental constants from ref. 12. Our measured value for the 3He+ nuclear g-factor enables determination of the g-factor of the bare nucleus [Formula: see text] via our accurate calculation of the diamagnetic shielding constant13 [Formula: see text]. This constitutes a direct calibration for 3He NMR probes and an improvement of the precision by one order of magnitude compared to previous indirect results. The measured zero-field hyperfine splitting improves the precision by two orders of magnitude compared to the previous most precise value14 and enables us to determine the Zemach radius15 to [Formula: see text] fm.
RESUMEN
The cyclotron frequency ratio of ^{187}Os^{29+} to ^{187}Re^{29+} ions was measured with the Penning-trap mass spectrometer PENTATRAP. The achieved result of R=1.000 000 013 882(5) is to date the most precise such measurement performed on ions. Furthermore, the total binding-energy difference of the 29 missing electrons in Re and Os was calculated by relativistic multiconfiguration methods, yielding the value of ΔE=53.5(10) eV. Finally, using the achieved results, the mass difference between neutral ^{187}Re and ^{187}Os, i.e., the Q value of the ß^{-} decay of ^{187}Re, is determined to be 2470.9(13) eV.
RESUMEN
State-of-the-art optical clocks1 achieve precisions of 10-18 or better using ensembles of atoms in optical lattices2,3 or individual ions in radio-frequency traps4,5. Promising candidates for use in atomic clocks are highly charged ions6 (HCIs) and nuclear transitions7, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range8 that are accessible to frequency combs9. However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10-11-an improvement by a factor of ten compared with previous measurements10,11. With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 × 1016 hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 × 10-8 hertz and one of the highest electronic quality factors (1024) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions8,12 in HCIs, which are required for precision studies of fundamental physics6.
RESUMEN
An experimental realization of a compact, high-power spectral beamsplitter for nearly equal frequencies and identical polarization based on two-beam interference in a free-space Mach-Zehnder interferometer is presented. We demonstrate the power- and cost-efficient generation and subsequent spatial separation of two laser tones from a single sum-frequency-generation stage using double-sideband suppressed-carrier modulation in the infrared, and beam splitting in the visible at high power. The interferometer spectrally splits >98 % of the incident power when accounting for bulk absorption. The beamsplitter can be constructed identically for any power or spectral range required for which suitable optics are available.
RESUMEN
First ever measurements of the ratios of free cyclotron frequencies of heavy, highly charged ions with Z>50 with relative uncertainties close to 10^{-11} are presented. Such accurate measurements have become realistic due to the construction of the novel cryogenic multi-Penning-trap mass spectrometer PENTATRAP. Based on the measured frequency ratios, the mass differences of five pairs of stable xenon isotopes, ranging from ^{126}Xe to ^{134}Xe, have been determined. Moreover, the first direct measurement of an electron binding energy in a heavy highly charged ion, namely of the 37th atomic electron in xenon, with an uncertainty of a few eV is demonstrated. The obtained value agrees with the calculated one using two independent, different implementations of the multiconfiguration Dirac-Hartree-Fock method. PENTATRAP opens the door to future measurements of electron binding energies in highly charged heavy ions for more stringent tests of bound-state quantum electrodynamics in strong electromagnetic fields and for an investigation of the manifestation of light dark matter in isotopic chains of certain chemical elements.
RESUMEN
This paper reports on the development and testing of a novel, highly efficient technique for the injection of very rare species into electron beam ion traps (EBITs) for the production of highly charged ions (HCI). It relies on in-trap laser-induced desorption of atoms from a sample brought very close to the electron beam resulting in a very high capture efficiency in the EBIT. We have demonstrated a steady production of HCI of the stable isotope 165Ho from samples of only 1012 atoms (â¼300 pg) in charge states up to 45+. HCI of these species can be subsequently extracted for use in other experiments or stored in the trapping volume of the EBIT for spectroscopic measurements. The high efficiency of this technique extends the range of rare isotope HCIs available for high-precision atomic mass and spectroscopic measurements. A first application of this technique is the production of HCI of the synthetic radioisotope 163Ho for a high-precision measurement of the QEC-value of the electron capture in 163Ho within the "Electron Capture in Holmium" experiment [L. Gastaldo et al., J. Low Temp. Phys. 176, 876-884 (2014); L. Gastaldo et al., Eur. Phys. J.: Spec. Top. 226, 1623-1694 (2017)] (ECHo collaboration) ultimately leading to a measurement of the electron neutrino mass with an uncertainty on the sub electronvolt level.
RESUMEN
The atomic mass difference of (163)Ho and (163)Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in (163)Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7σ to 2833(30(stat))(15(sys)) eV/c(2). With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensitivity to the neutrino mass below 10 eV, which will reduce its present upper limit by more than an order of magnitude.