RESUMEN
BACKGROUND & AIMS: Unhealthy lifestyles, such as chronic consumption of a Western Diet (WD), have been associated with increased systemic inflammation and oxidative stress (OS), a condition that may favour cognitive dysfunctions during aging. Polyphenols, such as rosmarinic acid (RA) may buffer low-grade inflammation and OS, characterizing the aging brain that is sustained by WD, promoting healthspan. The aim of this study was to evaluate the ability of RA to prevent cognitive decline in a mouse model of WD-driven unhealthy aging and to gain knowledge on the specific molecular pathways modulated within the brain. METHODS: Aged male and female C57Bl/6N mice were supplemented either with RA or vehicle for 6 weeks. Following 2 weeks on RA they started being administered either with WD or control diet (CD). Successively all mice were tested for cognitive abilities in the Morris water maze (MWM) and emotionality in the elevated plus maze (EPM). Glucose and lipid homeostasis were assessed in trunk blood while the hippocampus was dissected out for RNAseq transcriptomic analysis. RESULTS: RA prevented insulin resistance in males while protecting both males and females from WD-dependent memory impairment. In the hippocampus, RA modulated OS pathways in males and immune- and sex hormones-related signalling cascades (Lhb and Lhcgr genes) in females. Moreover, RA overall resulted in an upregulation of Glp1r, recently identified as a promising target to prevent metabolic derangements. In addition, we also found an RA-dependent enrichment in nuclear transcription factors, such as NF-κB, GR and STAT3, that have been recently suggested to promote healthspan and longevity by modulating inflammatory and cell survival pathways. CONCLUSIONS: Oral RA supplementation may promote brain and metabolic plasticity during aging through antioxidant and immune-modulating properties possibly affecting the post-reproductive hormonal milieu in a sex-dependent fashion. Thus, its supplementation should be considered in the context of precision medicine as a possible strategy to preserve cognitive functions and to counteract metabolic derangements.
Asunto(s)
Envejecimiento , Cinamatos , Depsidos , Dieta Occidental , Hipocampo , Ratones Endogámicos C57BL , Ácido Rosmarínico , Animales , Depsidos/farmacología , Masculino , Femenino , Cinamatos/farmacología , Ratones , Dieta Occidental/efectos adversos , Envejecimiento/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Factores Sexuales , Disfunción Cognitiva/prevención & control , Estrés Oxidativo/efectos de los fármacos , Cognición/efectos de los fármacos , Resistencia a la Insulina , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/efectos de los fármacos , Antioxidantes/farmacologíaRESUMEN
To ameliorate or even prevent signatures of aging in ultimately humans, we here report the identification of a previously undescribed polyacetylene contained in the root of carrots (Daucus carota), hereafter named isofalcarintriol, which we reveal as potent promoter of longevity in the nematode C. elegans. We assign the absolute configuration of the compound as (3 S,8 R,9 R,E)-heptadeca-10-en-4,6-diyne-3,8,9-triol, and develop a modular asymmetric synthesis route for all E-isofalcarintriol stereoisomers. At the molecular level, isofalcarintriol affects cellular respiration in mammalian cells, C. elegans, and mice, and interacts with the α-subunit of the mitochondrial ATP synthase to promote mitochondrial biogenesis. Phenotypically, this also results in decreased mammalian cancer cell growth, as well as improved motility and stress resistance in C. elegans, paralleled by reduced protein accumulation in nematodal models of neurodegeneration. In addition, isofalcarintriol supplementation to both wild-type C57BL/6NRj mice on high-fat diet, and aged mice on chow diet results in improved glucose metabolism, increased exercise endurance, and attenuated parameters of frailty at an advanced age. Given these diverse effects on health parameters in both nematodes and mice, isofalcarintriol might become a promising mitohormesis-inducing compound to delay, ameliorate, or prevent aging-associated diseases in humans.
Asunto(s)
Caenorhabditis elegans , Daucus carota , Humanos , Animales , Ratones , Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Envejecimiento , Longevidad , Poliinos/metabolismo , MamíferosRESUMEN
A growing body of evidence suggests that regular consumption of natural products might promote healthy aging; however, their mechanisms of action are still unclear. Rosmarinic acid (RA) is a polyphenol holding anti-inflammatory, antioxidant and neuroprotective properties. The aim of this study was to characterise the efficacy of an oral administration of RA in promoting healthspan in a mouse model of physiological aging. Aged C57Bl/6 male and female (24-month-old) mice were either administered with RA (500 mg/Kg) or a vehicle in drinking bottles for 52 days while 3-month-old mice receiving the same treatment were used as controls. All subjects were assessed for cognitive abilities in the Morris water maze (MWM) and for emotionality in the elevated-plus maze test (EPM). Brain-derived Neurotrophic Factor (BDNF) protein levels were evaluated in the hippocampus. Since the interaction between metabolic signals and cerebral functions plays a pivotal role in the etiopathogenesis of cognitive decline, the glycaemic and lipid profiles of the mice were also assessed. RA enhanced learning and memory in 24-month-old mice, an effect that was associated to improved glucose homeostasis. By contrast, the lipid profile was disrupted in young adults. This effect was associated with worse glycaemic control in males and with reduced BDNF levels in females, suggesting powerful sex-dependent effects and raising a note of caution for RA administration in young healthy adult subjects.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Estrés Oxidativo , Masculino , Ratones , Femenino , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición , Hipocampo/metabolismo , Ratones Endogámicos , Glucosa/metabolismo , Lípidos , Ratones Endogámicos C57BL , Ácido RosmarínicoRESUMEN
Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.
RESUMEN
Lithium is a nutritional trace element that is also used pharmacologically for the management of bipolar and related psychiatric disorders. Recent studies have shown that lithium supplementation can extend health and lifespan in different animal models. Moreover, nutritional lithium uptake from drinking water was repeatedly found to be positively correlated with human longevity. By analyzing a large observational aging cohort (UK Biobank, n = 501,461 individuals) along with prescription data derived from the National Health Services (NHS), we here find therapeutic supplementation of lithium linked to decreased mortality (p = 0.0017) of individuals diagnosed with affective disorders. Subsequent multivariate survival analyses reveal lithium to be the strongest factor in regards to increased survival effects (hazard ratio = 0.274 [0.119-0.634 CI 95%, p = 0.0023]), corresponding to 3.641 times lower (95% CI 1.577-8.407) chances of dying at a given age for lithium users compared to users of other anti-psychotic drugs. While these results may further support the use of lithium as a geroprotective supplement, it should be noted that doses applied within the UK Biobank/NHS setting require close supervision by qualified medical professionals.
Asunto(s)
Litio , Longevidad , Animales , Humanos , Litio/uso terapéutico , Litio/análisis , Bancos de Muestras Biológicas , Compuestos de Litio/uso terapéutico , Reino UnidoRESUMEN
Due to intact reactive oxygen species homeostasis and glucose metabolism, C57BL/6NRj mice are especially suitable to study cellular alterations in metabolism. We applied Nuclear Magnetic resonance spectroscopy to analyze five different tissues of this mouse strain during aging and included female and male mice aged 3, 6, 12, and 24 months. Metabolite signatures allowed separation between the age groups in all tissues, and we identified the most prominently changing metabolites in female and male tissues. A refined analysis of individual metabolite levels during aging revealed an early onset of age-related changes at 6 months, sex-specific differences in the liver, and a biphasic pattern for various metabolites in the brain, heart, liver, and lung. In contrast, a linear decrease of amino acids was apparent in muscle tissues. Based on these results, we assume that age-related metabolic alterations happen at a comparably early aging state and are potentially associated with a metabolic switch. Moreover, identified differences between female and male tissues stress the importance of distinguishing between sexes when studying age-related changes and developing new treatment approaches. Besides, metabolomic features seem to be highly dependent on the genetic background of mouse strains.
Asunto(s)
Envejecimiento , Ratones Endogámicos C57BL , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL/metabolismoRESUMEN
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
RESUMEN
Inhibition of gene expression in Caenorhabditis elegans, a versatile model organism for studying the genetics of development and aging, is achievable by feeding nematodes with bacteria expressing specific dsRNAs. Overexpression of hypoxia-inducible factor 1 (hif-1) or heat-shock factor 1 (hsf-1) by conventional transgenesis has previously been shown to promote nematodal longevity. However, it is unclear whether other methods of gene overexpression are feasible, particularly with the advent of CRISPR-based techniques. Here, we show that feeding C. elegans engineered to stably express a Cas9-derived synthetic transcription factor with bacteria expressing promoter-specific single guide RNAs (sgRNAs) also allows activation of gene expression. We demonstrate that CRISPR activation via ingested sgRNAs specific for the respective promoter regions of hif-1 or hsf-1 increases gene expression and extends lifespan of C. elegans. Furthermore, and as an in silico resource for future studies aiming to use CRISPR activation in C. elegans, we provide predicted promoter-specific sgRNA target sequences for >13,000 C. elegans genes with experimentally defined transcription start sites. We anticipate that the approach and components described herein will help to facilitate genome-wide gene overexpression studies, for example, to identify modulators of aging or other phenotypes of interest, by enabling induction of transcription by feeding of sgRNA-expressing bacteria to nematodes.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ingestión de Alimentos , Longevidad/genética , ARN Pequeño no Traducido , Sistemas CRISPR-CasRESUMEN
Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.
RESUMEN
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. Although far from understood in its full complexity, it is scientifically well established that aging is influenced by genetic and environmental factors and can be modulated by various interventions. One of aging's early hallmarks is aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect life span and health span across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice) and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Asunto(s)
Longevidad , Enfermedades Neurodegenerativas , Envejecimiento/genética , Animales , Regulación de la Expresión Génica , Humanos , Ratones , Factores de Transcripción/genéticaRESUMEN
Aging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Fosfatidilinositol 3-Quinasas Clase II/genética , Diabetes Mellitus Tipo 2/genética , Factor I del Crecimiento Similar a la Insulina/genética , Insulina/metabolismo , Longevidad/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Glucemia/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Humanos , Resistencia a la Insulina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad/efectos de los fármacos , Metilación , Ratones , Papaverina/farmacología , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Vorinostat/farmacologíaRESUMEN
Green tea catechins are associated with a delay in aging. We have designed the current study to investigate the impact and to unveil the target of the most abundant green tea catechins, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). Experiments were performed in Caenorhabditis elegans to analyze cellular metabolism, ROS homeostasis, stress resistance, physical exercise capacity, health- and lifespan, and the underlying signaling pathways. Besides, we examined the impact of EGCG and ECG in isolated murine mitochondria. A concentration of 2.5 µM EGCG and ECG enhanced health- and lifespan as well as stress resistance in C. elegans. Catechins hampered mitochondrial respiration in C. elegans after 6-12 h and the activity of complex I in isolated rodent mitochondria. The impaired mitochondrial respiration was accompanied by a transient drop in ATP production and a temporary increase in ROS levels in C. elegans. After 24 h, mitochondrial respiration and ATP levels got restored, and ROS levels even dropped below control conditions. The lifespan increases induced by EGCG and ECG were dependent on AAK-2/AMPK and SIR-2.1/SIRT1, as well as on PMK-1/p38 MAPK, SKN-1/NRF2, and DAF-16/FOXO. Long-term effects included significantly diminished fat content and enhanced SOD and CAT activities, required for the positive impact of catechins on lifespan. In summary, complex I inhibition by EGCG and ECG induced a transient drop in cellular ATP levels and a temporary ROS burst, resulting in SKN-1 and DAF-16 activation. Through adaptative responses, catechins reduced fat content, enhanced ROS defense, and improved healthspan in the long term.
Asunto(s)
Catequina/análogos & derivados , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Longevidad/efectos de los fármacos , Té/química , Animales , Caenorhabditis elegans , Catequina/química , Catequina/farmacología , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Fisiológico/efectos de los fármacosRESUMEN
Calcium (Ca2+) and reactive oxygen species (ROS) are versatile signaling molecules coordinating physiological and pathophysiological processes. While channels and pumps shuttle Ca2+ ions between extracellular space, cytosol and cellular compartments, short-lived and highly reactive ROS are constantly generated by various production sites within the cell. Ca2+ controls membrane potential, modulates mitochondrial adenosine triphosphate (ATP) production and affects proteins like calcineurin (CaN) or calmodulin (CaM), which, in turn, have a wide area of action. Overwhelming Ca2+ levels within mitochondria efficiently induce and trigger cell death. In contrast, ROS comprise a diverse group of relatively unstable molecules with an odd number of electrons that abstract electrons from other molecules to gain stability. Depending on the type and produced amount, ROS act either as signaling molecules by affecting target proteins or as harmful oxidative stressors by damaging cellular components. Due to their wide range of actions, it is little wonder that Ca2+ and ROS signaling pathways overlap and impact one another. Growing evidence suggests a crucial implication of this mutual interplay on the development and enhancement of age-related disorders, including cardiovascular and neurodegenerative diseases as well as cancer.
Asunto(s)
Señalización del Calcio , Calcio , Calcio/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Excessive insulin signaling through the insulin receptor (IR) may play a role in the pathogenesis of diet-induced metabolic disease, including obesity and type 2 diabetes. Here we investigate whether heterozygous impairment of insulin receptor (IR) expression limited to peripheral, i.e. non-CNS, tissues of adult mice impacts the development of high-fat diet-induced metabolic deterioration. While exhibiting some features of insulin resistance, PerIRKO+/- mice display a hepatic energy deficit accompanied by induction of energy-sensing AMPK, mitochondrial biogenesis, PPARα, unexpectedly leading to protection from, and reversal of hepatic lipid accumulation (steatosis hepatis, NAFLD). Consistently, and unlike in control mice, the PPARα activator fenofibrate fails to further affect hepatic lipid accumulation in PerIRKO+/- mice. Taken together, and opposing previously established diabetogenic features of insulin resistance, incomplete impairment of insulin signaling may mimic central aspects of calorie restriction to limit hepatic lipid accumulation during conditions of metabolic stress.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ayuno/metabolismo , Hígado Graso/etiología , Hígado Graso/prevención & control , Receptor de Insulina/metabolismo , Animales , Composición Corporal , Metabolismo Energético , Conducta Alimentaria , Glucosa/metabolismo , Homeostasis , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Interventions and small molecules, which promote formation of reactive oxygen species (ROS), have repeatedly been shown to increase stress resistance and lifespan of different model organisms. These phenotypes occur only in response to low concentrations of ROS, while higher concentrations exert opposing effects. This non-linear or hormetic dose-response relationship has been termed mitohormesis, since ROS are mainly generated within the mitochondrial compartment. A report by Matsumura et al in this issue of EMBO Reports now demonstrates that an endogenously formed metabolite, namely N-acetyl-L-tyrosine (NAT), is instrumental in promoting cellular and organismal resilience by inducing mitohormetic mechanisms, likely in an evolutionarily conserved manner [1].