Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 35(44): 14300-14309, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31596094

RESUMEN

The interaction of polyamine poly(allylamine hydrochloride) with Na3PO4, Na4P2O7, Na5P3O10, Na6P6O18, and (NaPO3)26 salts and the formation of polyamine phosphate nanoparticles (PANs) are studied here. Dynamic light scattering, isothermal titration calorimetry (ITC), electrophoretical mobility measurements, atomic force microscopy, and transmission electron microscopy are used to explore the formation, stability, and pH sensitivity of PANs. An optimal concentration for PAN formation is found for each phosphate salt in terms of the most stable size and lowest polydispersity index of the nanoparticles. The minimal concentration of phosphate ions for PAN formation decreases with the increasing number of phosphate groups per phosphate salt. ITC measurements show that all polyphosphates display a characteristic endothermic peak, which is not present when monophosphates are used for PAN formation. pH stability of PANs depends on the type of phosphate salt. PANs formed with small phosphates show a small window of stability with pH from 8 to 9, while those formed with long phosphates are stable in more acidic pH environments. Our findings open multiple possibilities for fine-tuning the pH sensitivity of PANs by varying phosphate salts for potential applications in drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...