Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Alzheimers Dement (N Y) ; 10(3): e12490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988416

RESUMEN

INTRODUCTION: The "A/T/N" (amyloid/tau/neurodegeneration) framework provides a biological basis for Alzheimer's disease (AD) diagnosis and can encompass additional changes such as inflammation ("I"). A spectrum of T/N/I imaging and plasma biomarkers was acquired in a phase 2 clinical trial of rasagiline in mild to moderate AD patients. We evaluated these to understand biomarker distributions and relationships within this population. METHODS: Plasma biomarkers of pTau-181, neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), other inflammation-related proteins, imaging measures including fluorodeoxyglucose (FDG) positron emission tomography (PET), flortaucipir PET, and volumetric magnetic resonance imaging (MRI), and cognitive endpoints were analyzed to assess characteristics and relationships for the overall population (N = 47 at baseline and N = 21 for longitudinal cognitive comparisons) and within age-decade subgroups (57-69, 70-79, 80-90 years). RESULTS: Data demonstrate wide clinical and biomarker heterogeneity in this population influenced by age and sex. Plasma pTau-181 and GFAP correlate with tau PET, most strongly in left inferior temporal cortex (p = 0.0002, p = 0.0006, respectively). In regions beyond temporal cortex, tau PET uptake decreased with age for the same pTau-181 or GFAP concentrations. FDG PET and brain volumes correlate with tau PET in numerous regions (such as inferior temporal: p = 0.0007, p = 0.00001, respectively). NfL, GFAP, and all imaging modalities correlate with baseline MMSE; subsequent MMSE decline is predicted by baseline parahippocampal and lateral temporal tau PET (p = 0.0007) and volume (p = 0.0006). Lateral temporal FDG PET (p = 0.006) and volume (p = 0.0001) are most strongly associated with subsequent ADAS-cog decline. NfL correlates with FDG PET and baseline MMSE but not tau PET. Inflammation biomarkers are intercorrelated but correlated with other biomarkers in only the youngest group. DISCUSSION: Associations between plasma biomarkers, imaging biomarkers, and cognitive status observed in this study provide insight into relationships among biological processes in mild to moderate AD. Findings show the potential to characterize AD patients regarding likely tau pathology, neurodegeneration, prospective clinical decline, and the importance of covariates such as age. Highlights: Plasma pTau-181 and GFAP correlated with regional and global tau PET in mild to moderate AD.NfL correlated with FDG PET and cognitive endpoints but not plasma pTau-181 or tau PET.Volume and FDG PET showed strong relationships to tau PET, one another, and cognitive status.Temporal volumes most strongly predicted decline in both MMSE and ADAS-cog.Volume and plasma biomarkers can enrich for elevated tau PET with age a significant covariate.

2.
J Diabetes Sci Technol ; : 19322968241253568, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767382

RESUMEN

BACKGROUND: Large language models (LLMs) offer significant potential in medical information extraction but carry risks of generating incorrect information. This study aims to develop and validate a retriever-augmented generation (RAG) model that provides accurate medical knowledge about diabetes and diabetic foot care to laypersons with an eighth-grade literacy level. Improving health literacy through patient education is paramount to addressing the problem of limb loss in the diabetic population. In addition to affecting patient well-being through improved outcomes, improved physician well-being is an important outcome of a self-management model for patient health education. METHODS: We used an RAG architecture and built a question-and-answer artificial intelligence (AI) model to extract knowledge in response to questions pertaining to diabetes and diabetic foot care. We utilized GPT-4 by OpenAI, with Pinecone as a vector database. The NIH National Standards for Diabetes Self-Management Education served as the basis for our knowledge base. The model's outputs were validated through expert review against established guidelines and literature. Fifty-eight keywords were used to select 295 articles and the model was tested against 175 questions across topics. RESULTS: The study demonstrated that with appropriate content volume and few-shot learning prompts, the RAG model achieved 98% accuracy, confirming its capability to offer user-friendly and comprehensible medical information. CONCLUSION: The RAG model represents a promising tool for delivering reliable medical knowledge to the public which can be used for self-education and self-management for diabetes, highlighting the importance of content validation and innovative prompt engineering in AI applications.

3.
medRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38633784

RESUMEN

Background and Objectives: TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN mutation carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study is to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in sporadic FTD patients. Methods: Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic mutation in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic non-mutation carriers, and non-carrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex and CDR®+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. Results: The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN mutation carriers under the recessive dosage model. This was most pronounced in the thalamus in the left hemisphere, with a retained association when considering presymptomatic GRN mutation carriers only. The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 mutation carriers and in presymptomatic C9orf72 mutation carriers, under the recessive dosage model. Discussion: We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 mutations. This further supports TMEM106B as modifier of TDP-43 pathology. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 mutation carriers could additionally reflect TMEM106B's impact on divergent pathophysiological changes before the appearance of clinical symptoms.

4.
J Alzheimers Dis ; 96(4): 1505-1514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37980664

RESUMEN

BACKGROUND: Emerging evidence suggests a potential causal role of neuroinflammation in Alzheimer's disease (AD). Using positron emission tomography (PET) to image overexpressed 18 kDA translocator protein (TSPO) by activated microglia has gained increasing interest. The uptake of 18F-GE180 TSPO PET was observed to co-localize with inflammatory markers and have a two-stage association with amyloid PET in mice. Very few studies evaluated the diagnostic power of 18F-GE180 PET in AD population and its interpretation in human remains controversial about whether it is a marker of microglial activation or merely reflects disrupted blood-brain barrier integrity in humans. OBJECTIVE: The goal of this study was to study human GE180 from the perspective of the previous animal observations. METHODS: With data from twenty-four participants having 18F-GE180 and 18F-AV45 PET scans, we evaluated the group differences of 18F-GE180 uptake between participants with and without cognitive impairment. An association analysis of 18F-GE180 and 18F-AV45 was then conducted to test if the relationship in humans is consistent with the two-stage association in AD mouse model. RESULTS: Elevated 18F-GE180 was observed in participants with cognitive impairment compared to those with normal cognition. No regions showed reduced 18F-GE180 uptake. Consistent with mouse model, a two-stage association between 18F-GE180 and 18F-AV45 was observed. CONCLUSIONS: 18F-GE180 PET imaging showed promising utility in detecting pathological alterations in a symptomatic AD population. Consistent two-stage association between 18F-GE180 and amyloid PET in human and mouse suggested that 18F-GE180 uptake in human might be considerably influenced by microglial activation.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/patología , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Péptidos beta-Amiloides/metabolismo , Receptores de GABA/metabolismo
5.
Alzheimers Res Ther ; 15(1): 190, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924152

RESUMEN

INTRODUCTION: There is a tremendous need for identifying reliable blood-based biomarkers for Alzheimer's disease (AD) that are tied to the biological ATN (amyloid, tau and neurodegeneration) framework as well as clinical assessment and progression. METHODS: One hundred forty-four elderly participants underwent 18F-AV45 positron emission tomography (PET) scan, structural magnetic resonance imaging (MRI) scan, and blood sample collection. The composite standardized uptake value ratio (SUVR) was derived from 18F-AV45 PET to assess brain amyloid burden, and the hippocampal volume was determined from structural MRI scans. Plasma glial fibrillary acidic protein (GFAP), phosphorylated tau-181 (ptau-181), and neurofilament light (NfL) measured by single molecular array (SIMOA) technology were assessed with respect to ATN framework, genetic risk factor, age, clinical assessment, and future functional decline among the participants. RESULTS: Among the three plasma markers, GFAP best discriminated participants stratified by clinical diagnosis and brain amyloid status. Age was strongly associated with NfL, followed by GFAP and ptau-181 at much weaker extent. Brain amyloid was strongly associated with plasma GFAP and ptau-181 and to a lesser extent with plasma NfL. Moderate association was observed between plasma markers. Hippocampal volume was weakly associated with all three markers. Elevated GFAP and ptau-181 were associated with worse cognition, and plasma GFAP was the most predictive of future functional decline. Combining GFAP and ptau-181 together was the best model to predict brain amyloid status across all participants (AUC = 0.86) or within cognitively impaired participants (AUC = 0.93); adding NfL as an additional predictor only had a marginal improvement. CONCLUSION: Our findings indicate that GFAP is of potential clinical utility in screening amyloid pathology and predicting future cognitive decline. GFAP, NfL, and ptau-181 were moderately associated with each other, with discrepant relevance to age, sex, and AD genetic risk, suggesting their relevant but differential roles for AD assessment. The combination of GFAP with ptau-181 provides an accurate model to predict brain amyloid status, with the superior performance of GFAP over ptau-181 when the prediction is limited to cognitively impaired participants.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Proteína Ácida Fibrilar de la Glía , Filamentos Intermedios , Proteínas tau , Proteínas Amiloidogénicas , Biomarcadores , Péptidos beta-Amiloides
6.
Alzheimers Res Ther ; 15(1): 173, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828595

RESUMEN

BACKGROUND: It is unknown if fluid biomarkers reflective of brain pathologies are useful in detecting and following a neurodegenerative process in individuals exposed to repetitive head impacts. This study explores the relationship between blood biomarkers and longitudinal change in cognitive function and regional brain volumes in a cohort of professional fighters. METHODS: Participants are drawn from a convenience sample of active and retired professional boxers and Mixed Martial Arts fighters and a control group with no prior exposure to head impacts. 3 T MRI brain imaging, plasma samples, and computerized cognitive testing were obtained at baseline and, for a subset, annually. MRI regional volumes were extracted, along with plasma levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), p-tau231, and N-terminal tau (NTA). Statistical analyses were performed to assess the relationship between plasma levels and regional brain volumes and cognitive performance at baseline and longitudinally. RESULTS: One hundred forty active boxers (mean age: 31 with standard deviation (SD) of 8), 211 active MMA (mean age of 30 with SD of 5), 69 retired boxers (mean age 49 with SD of 9), and 52 control participants (mean age 36 with SD of 12) were included in the analyses. Baseline GFAP levels were highest in the retired boxers (retired boxers v. active MMA: p = 0.0191), whereas active boxers had higher levels of NfL (active boxers v. MMA: p = 0.047). GFAP showed an increase longitudinally in retired boxers that was associated with decreasing volumes of multiple cortical and subcortical structures (e.g., hippocampus: B = - 1.25, 95% CI, - 1.65 to - 0.85) and increase in lateral ventricle size (B = 1.75, 95% CI, 1.46 to 2.04). Furthermore, performance on cognitive domains including memory, processing speed, psychomotor speed, and reaction time declined over time with increasing GFAP (e.g., processing speed: B = - 0.04, 95% CI, - 0.07 to - 0.02; reaction time: B = 0.52, 95% CI, 0.28 to 0.76). Among active fighters, increasing levels of GFAP were correlated with lower thalamic (B = - 1.42, 95% CI, - 2.34 to -0.49) and corpus callosum volumes, along with worsening scores on psychomotor speed (B = 0.14, 95% CI, 0.01 to 0.27). CONCLUSION: Longitudinal plasma GFAP levels may have a role in identifying individuals exposed to repetitive head impacts who are at risk of showing progressive regional atrophy and cognitive decline.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Humanos , Adulto , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/patología , Cognición , Biomarcadores , Pruebas Neuropsicológicas
7.
Neurology ; 101(11): e1118-e1126, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37380429

RESUMEN

BACKGROUND AND OBJECTIVES: Due to current limitations in diagnosing chronic traumatic encephalopathy (CTE) clinically, traumatic encephalopathy syndrome (TES) has been proposed as the clinical presentation of suspected CTE. This study aimed to determine whether there was an association between a clinical diagnosis of TES and subsequent temporal decline in cognitive or MRI volumetric measures. METHODS: This was a secondary analysis of the Professional Athletes Brain Health Study (PABHS), inclusive of active and retired professional fighters older than 34 years. All athletes were adjudicated as TES positive (TES+) or TES negative (TES-) based on the 2021 clinical criteria. General linear mixed models were used to compare MRI regional brain volumes and cognitive performance between groups. RESULTS: A total of 130 fighters met inclusion criteria for consensus conference. Of them, 52 fighters (40%) were adjudicated as TES+. Athletes with a TES+ diagnosis were older and had significantly lower education. Statistically significant interactions and between-group total mean differences were found in all MRI volumetric measurements among the TES+ group compared with those among the TES- group. The rate of volumetric change indicated a significantly greater increase for lateral (estimate = 5,196.65; 95% CI = 2642.65, 7750.66) and inferior lateral ventricles (estimate = 354.28; 95% CI = 159.90, 548.66) and a decrease for the hippocampus (estimate = -385.04, 95% CI = -580.47, -189.62), subcortical gray matter (estimate = -4,641.08; 95% CI = -6783.98, -2498.18), total gray matter (estimate = -26492.00; 95% CI = -50402.00, -2582.32), and posterior corpus callosum (estimate = -147.98; 95% CI = -222.33, -73.62). Likewise, the rate of cognitive decline was significantly greater for reaction time (estimate = 56.31; 95% CI = 26.17, 86.45) and other standardized cognitive scores in the TES+ group. DISCUSSION: The 2021 TES criteria clearly distinguishes group differences in the longitudinal presentation of volumetric loss in select brain regions and cognitive decline among professional fighters 35 years and older. This study suggests that a TES diagnosis may be useful in professional sports beyond football, such as boxing and mixed martial arts. These findings further suggest that the application of TES criteria may be valuable clinically in predicting cognitive decline.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Disfunción Cognitiva , Humanos , Encéfalo/diagnóstico por imagen , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Encefalopatía Traumática Crónica/diagnóstico por imagen
8.
Neurotrauma Rep ; 4(1): 342-349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284698

RESUMEN

Many studies have investigated the imaging sequelae of repetitive head trauma with mixed results, particularly with regard to the detection of intracranial white matter changes (WMCs) and cerebral microhemorrhages (CMHs) on ≤3 Tesla (T) field magnetic resonance imaging (MRI). 7T MRI, which has recently been approved for clinical use, is more sensitive at detecting lesions associated with multiple neurological diagnoses. In this study, we sought to determine whether 7T MRI would detect more WMCs and CMHs than 3T MRI in 19 professional fighters, 16 patients with single TBI, versus 82 normal healthy controls (NHCs). Fighters and patients with TBI underwent both 3T and 7T MRI; NHCs underwent either 3T (n = 61) or 7T (n = 21) MRI. Readers agreed on the presence/absence of WMCs in 88% (84 of 95) of 3T MRI studies (Cohen's kappa, 0.76) and in 93% (51 of 55) of 7T MRI studies (Cohen's kappa, 0.79). Readers agreed on the presence/absence of CMHs in 96% (91 of 95) of 3T MRI studies (Cohen's kappa, 0.76) and in 96% (54 of 56) of 7T MRI studies (Cohen's kappa, 0.88). The number of WMCs detected was greater in fighters and patients with TBI than NHCs at both 3T and 7T. Moreover, the number of WMCs was greater at 7T than at 3T for fighters, patients with TBI, and NHCs. There was no difference in the number of CMHs detected with 7T MRI versus 3T MRI or in the number of CMHs observed in fighters/patients with TBI versus NHCs. These initial findings suggest that fighters and patients with TBI may have more WMCs than NHCs and that the improved voxel size and signal-to-noise ratio at 7T may help to detect these changes. As 7T MRI becomes more prevalent clinically, larger patient populations should be studied to determine the cause of these WMCs.

9.
J Neuroimaging ; 33(4): 547-557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37080778

RESUMEN

BACKGROUND AND PURPOSE: Resting-state functional MRI (rs-fMRI) studies in Parkinson's disease (PD) patients with freezing of gait (FOG) have implicated dysfunctional connectivity over multiple resting-state networks (RSNs). While these findings provided network-specific insights and information related to the aberrant or altered regional functional connectivity (FC), whether these alterations have any effect on topological reorganization in PD-FOG patients is incompletely understood. Understanding the higher order functional organization, which could be derived from the "hub" and the "rich-club" organization of the functional networks, could be crucial to identifying the distinct and unique pattern of the network connectivity associated with PD-FOG. METHODS: In this study, we use rs-fMRI data and graph theoretical approaches to explore the reorganization of RSN topology in PD-FOG when compared to those without FOG. We also compared the higher order functional organization derived using the hub and rich-club measures in the FC networks of these PD-FOG patients to understand whether there is a topological reorganization of these hubs in PD-FOG. RESULTS: We found that the PD-FOG patients showed a noticeable reorganization of hub regions. Regions that are part of the prefrontal cortex, primary somatosensory, motor, and visuomotor coordination areas were some of the regions exhibiting altered hub measures in PD-FOG patients. We also found a significantly altered feeder and local connectivity in PD-FOG. CONCLUSIONS: Overall, our findings demonstrate a widespread topological reorganization and disrupted higher order functional network topology in PD-FOG that may further assist in improving our understanding of functional network disturbances associated with PD-FOG.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/complicaciones , Vías Nerviosas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador , Marcha
10.
J Clin Med ; 12(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36983338

RESUMEN

BACKGROUND: Olfaction impairment in aging is associated with increased anxiety. We explored this association in cognitively healthy controls (HCs), Mild Cognitive Impairment (MCI) and Parkinson's disease (PD) patients. Both olfaction and anxiety have sex differences, therefore we also investigated these variances. OBJECTIVES: Investigate the association of olfaction with anxiety in three distinct clinical categories of aging, exploring the potential role of sex. METHODS: 117 subjects (29 HCs, 43 MCI, and 45 PD patients) were assessed for olfaction and anxiety. We used regression models to determine whether B-SIT predicted anxiety and whether sex impacted that relationship. RESULTS: Lower olfaction was related to greater anxiety traits in all groups (HCs: p = 0.015; MCI: p = 0.001 and PD: p = 0.038), significantly differed by sex. In fact, in HCs, for every unit increase in B-SIT, anxiety traits decreased by 7.63 in men (p = 0.009) and 1.5 in women (p = 0.225). In MCI patients for every unit increase in B-SIT, anxiety traits decreased by 1.19 in men (p = 0.048) and 3.03 in women (p = 0.0036). Finally, in PD patients for every unit increase in B-SIT, anxiety traits decreased by 1.73 in men (p = 0.004) and 0.41 in women (p = 0.3632). DISCUSSION: Olfaction and anxiety are correlated in all three distinct diagnostic categories, but differently in men and women.

11.
J Head Trauma Rehabil ; 38(6): 458-466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36701308

RESUMEN

OBJECTIVE: As part of a larger study dedicated to identifying speech and language biomarkers of neurological decline associated with repetitive head injury (RHI) in professional boxers and mixed martial artists (MMAs), we examined articulation rate, pausing, and disfluency in passages read aloud by participants in the Professional Athletes Brain Health Study. SETTING: A large outpatient medical center specializing in neurological care. PARTICIPANTS, DESIGN, AND MAIN MEASURES: Passages read aloud by 60 boxers, 40 MMAs, and 55 controls were acoustically analyzed to determine articulation rate (the number of syllables produced per second), number and duration of pauses, and number and duration of disfluencies in this observational study. RESULTS: Both boxers and MMAs differed from controls in articulation rate, producing syllables at a slower rate than controls by nearly half a syllable per second on average. Boxers produced significantly more pauses and disfluencies in passages read aloud than MMAs and controls. CONCLUSIONS: Slower articulation rate in both boxers and MMA fighters compared with individuals with no history of RHI and the increased occurrence of pauses and disfluencies in the speech of boxers suggest changes in speech motor behavior that may relate to RHI. These speech characteristics can be measured in everyday speaking conditions and by automatic recognition systems, so they have the potential to serve as effective, noninvasive clinical indicators for RHI-associated neurological decline.


Asunto(s)
Traumatismos Craneocerebrales , Habla , Humanos , Encéfalo
12.
Br J Sports Med ; 57(7): 389-394, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36517216

RESUMEN

OBJECTIVE: To examine the characteristics of those who fulfil the recent National Institute of Neurological Disease and Stroke (NINDS) Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome (TES) and test whether they show differences in MRI-based regional brain volumes, cognitive domains, and certain plasma biomarkers. METHODS: Professional fighters 35 years of age or older and/or retired were included. Participants were categorised as either having TES (TES+) or not (non-TES). TES+ participants were further subtyped by their cognitive profile. Multiple linear regression models were used to compare MRI-based regional brain volumes, cognitive performance, plasma tau and neurofilament light levels between TES- and TES+ groups. RESULTS: 176 participants (110 boxers and 66 MMA) were included in the analysis. 72 (41%)/176 were categorised as having TES, the likelihood of TES increasing with age. TES+ participants tended to be boxers, started fighting at a younger age, had more professional fights and knocked out more frequently. The TES+ group had lower regional brain volumes including both grey and white matter structures. TES+ also had lower scores on simple and choice reaction time, psychomotor speed and Trails A . CONCLUSION: The new TES criteria does distinguish a group of fighters with differences in regional brain volumes and reduced cognitive function. Our findings support the use of the NINDS criteria for TES in further research of the long-term effects of repetitive head impacts.


Asunto(s)
Boxeo , Lesiones Traumáticas del Encéfalo , Sustancia Blanca , Humanos , Cognición , Neuroimagen , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética
13.
Neurology ; 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104283

RESUMEN

OBJECTIVE: This study compares longitudinal changes in cognitive functioning and brain structures in male fighters who transitioned to an inactive fighting status without any further exposure to repetitive head impacts (RHI) and fighters remaining active with continual exposure to RHI. METHODS: Participants were recruited from the Professional Fighters Brain Health Study. At time point 1 (TP1), all fighters were active, with continual exposure to RHI. At time point 2 (TP2), fighters were considered "transitioned" if they had no sanctioned professional fights and had not been sparring for the past 2 years. Fighters were considered "active" if they continued to train and compete. All fighters underwent cognitive testing and 3T magnetic resonance imaging (MRI) at both TPs. A subset of our fighters (50%) underwent blood sampling for characterization of neurofilament light (NfL) levels at both TPs. Linear mixed effect models were applied to investigate the potentially different longitudinal trajectories (interaction effect between group and time) of cognitive function measures, NfL levels and regional thickness measures (derived from structural MRI) between transitioned and active fighters. RESULTS: 45 male transitioned fighters (31.69±6.27 years old (TP1), 22 boxers, 22 mixed martial artists, 1 martial artist) and 45 demographically matched male active fighters (30.24±5.44 years old (TP1); 17 boxers, 27 mixed martial artists, 1 martial artist) were included in the analyses. Significantly different longitudinal trajectories between transitioned and active fighters were observed in verbal memory (p FDR =4.73E-04), psychomotor speed (p FDR =4.73E-04), processing speed (p FDR =3.90E-02) and NfL levels (p=0.02). Transitioned fighters demonstrated longitudinally improved cognitive functioning and decreased NfL levels, and active fighters demonstrated declines in cognitive performance and stable NfL levels. Out of 68 cortical regions inspected, 54 regions demonstrated a consistently changing trajectory, with thickness measures stabilizing on a group level for transitioned fighters and subtly declining over time for active fighters. CONCLUSION: After fighters' cessation of RHI exposure, cognitive function and brain thickness measures may stabilize and blood NfL levels may decline. This study could be a starting point to identify potential predictors of individuals who are at a higher risk of RHI-related long-term neurological conditions.

14.
Contemp Clin Trials Commun ; 30: 100988, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36117568

RESUMEN

The search for disease modifying therapies in Alzheimers disease (AD) has recently led to promising results but also revealed design issues in clinical trials themselves. Of particular importance is the potential statistical challenges that can arise when dosages change after an interim analysis, which is not uncommon in contemporary AD trials. Following the recent Aducanumab trials, we sought to study the implications of dose changes on the statistical power of an AD trial. We conducted extensive simulations to calculate statistical power when the relationship between treatment effect size and time is linear or non-linear, and the investigated drug has delayed treatment effect or not. Statistical power depends on many design factors including the dose change time, correlation, population homogeneity, and treatment effect time. We recommend that researchers conduct simulation studies at the interim analysis to justify the modified sample size and/or follow-up time modification meanwhile the type I and II error rates are controlled.

15.
Brain Commun ; 4(4): fcac194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35950091

RESUMEN

Measuring cognitive function is essential for characterizing brain health and tracking cognitive decline in Alzheimer's Disease and other neurodegenerative conditions. Current tools to accurately evaluate cognitive impairment typically rely on a battery of questionnaires administered during clinical visits which is essential for the acquisition of repeated measurements in longitudinal studies. Previous studies have shown that the remote data collection of passively monitored daily interaction with personal digital devices can measure motor signs in the early stages of synucleinopathies, as well as facilitate longitudinal patient assessment in the real-world scenario with high patient compliance. This was achieved by the automatic discovery of patterns in the time series of keystroke dynamics, i.e. the time required to press and release keys, by machine learning algorithms. In this work, our hypothesis is that the typing patterns generated from user-device interaction may reflect relevant features of the effects of cognitive impairment caused by neurodegeneration. We use machine learning algorithms to estimate cognitive performance through the analysis of keystroke dynamic patterns that were extracted from mechanical and touchscreen keyboard use in a dataset of cognitively normal (n = 39, 51% male) and cognitively impaired subjects (n = 38, 60% male). These algorithms are trained and evaluated using a novel framework that integrates items from multiple neuropsychological and clinical scales into cognitive subdomains to generate a more holistic representation of multifaceted clinical signs. In our results, we see that these models based on typing input achieve moderate correlations with verbal memory, non-verbal memory and executive function subdomains [Spearman's ρ between 0.54 (P < 0.001) and 0.42 (P < 0.001)] and a weak correlation with language/verbal skills [Spearman's ρ 0.30 (P < 0.05)]. In addition, we observe a moderate correlation between our typing-based approach and the Total Montreal Cognitive Assessment score [Spearman's ρ 0.48 (P < 0.001)]. Finally, we show that these machine learning models can perform better by using our subdomain framework that integrates the information from multiple neuropsychological scales as opposed to using the individual items that make up these scales. Our results support our hypothesis that typing patterns are able to reflect the effects of neurodegeneration in mild cognitive impairment and Alzheimer's disease and that this new subdomain framework both helps the development of machine learning models and improves their interpretability.

16.
Cell Rep Med ; 3(4): 100607, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35492244

RESUMEN

Frontotemporal dementia (FTD) therapy development is hamstrung by a lack of susceptibility, diagnostic, and prognostic biomarkers. Blood neurofilament light (NfL) shows promise as a biomarker, but studies have largely focused only on core FTD syndromes, often grouping patients with different diagnoses. To expedite the clinical translation of NfL, we avail ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study resources and conduct a comprehensive investigation of plasma NfL across FTD syndromes and in presymptomatic FTD mutation carriers. We find plasma NfL is elevated in all studied syndromes, including mild cases; increases in presymptomatic mutation carriers prior to phenoconversion; and associates with indicators of disease severity. By facilitating the identification of individuals at risk of phenoconversion, and the early diagnosis of FTD, plasma NfL can aid in participant selection for prevention or early treatment trials. Moreover, its prognostic utility would improve patient care, clinical trial efficiency, and treatment outcome estimations.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Estudios Transversales , Demencia Frontotemporal/diagnóstico , Humanos , Filamentos Intermedios , Proteínas de Neurofilamentos/genética , Síndrome
17.
Front Psychiatry ; 13: 804168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479489

RESUMEN

Purpose: To assess the pathological aging effect on caudate functional connectivity among mild cognitive impairment (MCI) participants and examine whether and how sex and amyloid contribute to this process. Materials and Methods: Two hundred and seventy-seven functional magnetic resonance imaging (fMRI) sessions from 163 cognitive normal (CN) older adults and 309 sessions from 139 participants with MCI were included as the main sample in our analysis. Pearson's correlation was used to characterize the functional connectivity (FC) between caudate nuclei and each brain region, then caudate nodal strength was computed to quantify the overall caudate FC strength. Association analysis between caudate nodal strength and age was carried out in MCI and CN separately using linear mixed effect (LME) model with covariates (education, handedness, sex, Apolipoprotein E4, and intra-subject effect). Analysis of covariance was conducted to investigate sex, amyloid status, and their interaction effects on aging with the fMRI data subset having amyloid status available. LME model was applied to women and men separately within MCI group to evaluate aging effects on caudate nodal strength and each region's connectivity with caudate nuclei. We then evaluated the roles of sex and amyloid status in the associations of neuropsychological scores with age or caudate nodal strength. An independent cohort was used to validate the sex-dependent aging effects in MCI. Results: The MCI group had significantly stronger age-related increase of caudate nodal strength compared to the CN group. Analyzing women and men separately revealed that the aging effect on caudate nodal strength among MCI participants was significant only for women (left: P = 6.23 × 10-7, right: P = 3.37 × 10-8), but not for men (P > 0.3 for bilateral caudate nuclei). The aging effects on caudate nodal strength were not significantly mediated by brain amyloid burden. Caudate connectivity with ventral prefrontal cortex substantially contributed to the aging effect on caudate nodal strength in women with MCI. Higher caudate nodal strength is significantly related to worse cognitive performance in women but not in men with MCI. Conclusion: Sex modulates the pathological aging effects on caudate nodal strength in MCI regardless of amyloid status. Caudate nodal strength may be a sensitive biomarker of pathological aging in women with MCI.

18.
Front Neurol ; 13: 828155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370921

RESUMEN

The agrammatic or nonfluent variant of Primary Progressive Aphasia (nfvPPA) is a form of Frontotemporal Dementia (FTD) that is characterized by progressive language dysfunction, poor sentence construction, and low verbal fluency. Individuals with nfvPPA have intact insight into their decline, which may manifest as frustration and hopelessness, and show signs of impulsivity and disinhibition. Little is known about suicide risk in this patient population. Here we describe a case of an 84 year-old male with nfvPPA who, over the course of his care, experienced a decline in language and motoric functioning which coincided with increasing irritability and impulsivity. Despite this significant decline, he denied depressive symptoms or showed any suicidal tendencies, and he seemed to be looking forward to future events. His suicide, committed with a handgun during what appeared to be a rather innocuous trip to the garage, came as a significant shock to his spouse, family, and his clinical care team. To our knowledge, this is the first reported case of completed suicide in a patient with the nfvPPA subtype of FTD. Though this patient demonstrated demographic risk factors for suicide (advanced age, retired military veteran with easy access to firearms) there is a lack of data regarding how FTD may have contributed. Retained insight especially seems to be a risk factor for suicide across all forms of dementia. Impulsivity may be key when considering suicidality amongst FTD patients. Additionally, this case demonstrates the importance of addressing gun safety as there are few guidelines around gun ownership in this patient population.

19.
Aging Dis ; 13(1): 37-60, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35111361

RESUMEN

The field of Alzheimer's disease (AD) research critically lacks an all-inclusive etiology theory that would integrate existing hypotheses and explain the heterogeneity of disease trajectory and pathologies observed in each individual patient. Here, we propose a novel comprehensive theory that we named: the multipathology convergence to chronic neuronal stress. Our new theory reconsiders long-standing dogmas advanced by previous incomplete theories. Firstly, while it is undeniable that amyloid beta (Aß) is involved in AD, in the seminal stage of the disease Aß is unlikely pathogenic. Instead, we hypothesize that the root cause of AD is neuronal stress in the central nervous system (CNS), and Aß is expressed as part of the physiological response to protect CNS neurons from stress. If there is no return to homeostasis, then Aß becomes overexpressed, and this includes the generation of longer forms that are more toxic and prone to oligomerization. Secondly, AD etiology is plausibly not strictly compartmentalized within the CNS but may also result from the dysfunction of other physiological systems in the entire body. This view implies that AD may not have a single cause, but rather needs to be considered as a spectrum of multiple chronic pathological modalities converging to the persistent stressing of CNS neurons. These chronic pathological modalities, which include cardiovascular disease, metabolic disorders, and CNS structural changes, often start individually, and over time combine with other chronic modalities to incrementally escalate the amount of stress applied to CNS neurons. We present the case for considering Aß as a marker of neuronal stress in response to hypoxic, toxic, and starvation events, rather than solely a marker of AD. We also detail numerous human chronic conditions that can lead to neuronal stress in the CNS, making the link with co-morbidities encountered in daily clinical AD practice. Finally, we explain how our theory could be leveraged to improve clinical care for AD and related dementia in personalized medicine paradigms in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...