Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39335156

RESUMEN

OBJECTIVES: The primary objective of this research targeted the biochemical effects of SDT on human cervix carcinoma (HeLa) and mouse Lewis lung carcinoma (LLC) cells grown in 2D monolayer and 3D spheroid cell culture. METHODS: HeLa and LLC monolayers and spheroids were treated with a 20 µM C60-Ber for 24 h, followed by irradiation with 1 MHz, 1 W/cm2 US. To evaluate the efficacy of the proposed treatment on cancer cells, assessments of cell viability, caspase 3/7 activity, ATP levels, and ROS levels were conducted. RESULTS: Our results revealed that US irradiation alone had negligible effects on LLC and HeLa cancer cells. However, both monolayers and spheroids irradiated with US in the presence of the C60-Ber exhibited a significant decrease in viability (32% and 37%) and ATP levels (42% and 64%), along with a notable increase in ROS levels (398% and 396%) and caspase 3/7 activity (437% and 246%), for HeLa monolayers and spheroids, respectively. Similar tendencies were observed with LLC cells. In addition, the anticancer effects of C60-Ber surpassed those of C60, Ber, or their mixture (C60 + Ber) in both cell lines. CONCLUSIONS: The detected intensified ROS generation and ATP level drop point to mitochondria dysfunction, while increased caspase 3/7 activity points on the apoptotic pathway induction. The combination of 1 W/cm2 US with C60-Ber showcased a promising platform for synergistic sonodynamic chemotherapy for cancer treatment.

2.
Int J Nanomedicine ; 19: 8043-8058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130686

RESUMEN

Introduction: Rhabdomyolysis, as an acute stage of myopathy, causes kidney damage. It is known that this pathology is caused by the accumulation of muscle breakdown products and is associated with oxidative stress. Therefore, the present study evaluated the effect of intraperitoneal administration (dose 1 mg/kg) of water-soluble C60 fullerenes, as powerful antioxidants, on the development of rat kidney damage due to rhabdomyolysis caused by mechanical trauma of the muscle soleus of different severity (crush syndrome lasting 1 min under a pressure of 2.5, 3.5, and 4.5 kg/cm2, respectively). Methods: Using tensometry, biochemical and histopathological analyses, the biomechanical parameters of muscle soleus contraction (contraction force and integrated muscle power), biochemical indicators of rat blood (concentrations of creatinine, creatine phosphokinase, urea and hydrogen peroxide, catalase and superoxide dismutase activity), glomerular filtration rate and fractional sodium excretion value, as well as pathohistological and morphometric features of muscle and kidney damages in rats on days 1, 3, 6 and 9 after the initiation of the injury were studied. Results: Positive changes in biomechanical and biochemical parameters were found during the experiment by about 27-30 ± 2%, as well as a decrease in pathohistological and morphometric features of muscle and kidney damages in rats treated with water-soluble C60 fullerenes. Conclusion: These findings indicate the potential application of water-soluble C60 fullerenes in the treatment of pathological conditions of the muscular system caused by rhabdomyolysis and the associated oxidative stress.


Asunto(s)
Lesión Renal Aguda , Fulerenos , Músculo Esquelético , Ratas Wistar , Rabdomiólisis , Animales , Fulerenos/química , Fulerenos/farmacología , Fulerenos/administración & dosificación , Masculino , Lesión Renal Aguda/etiología , Lesión Renal Aguda/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Ratas , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Riñón/efectos de los fármacos , Contracción Muscular/efectos de los fármacos
3.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998903

RESUMEN

The liver is the main organ responsible for the metabolism of ethanol, which suffers significantly as a result of tissue damage due to oxidative stress. It is known that C60 fullerenes are able to efficiently capture and inactivate reactive oxygen species in in vivo and in vitro systems. Therefore, the purpose of this study is to determine whether water-soluble C60 fullerene reduces the level of pathological process development in the liver of rats induced by chronic alcohol intoxication for 3, 6, and 9 months, depending on the daily dose (oral administration; 0.5, 1, and 2 mg/kg) of C60 fullerene throughout the experiment. In this context, the morphology of the C60 fullerene nanoparticles in aqueous solution was studied using atomic force microscopy. Such biochemical parameters of experimental animal blood as ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma-glutamyl transferase) and ALP (alkaline phosphatase) enzyme activities, CDT (carbohydrate-deficient transferrin) level, values of pro-antioxidant balance indicators (concentrations of H2O2 (hydrogen peroxide) and GSH (reduced glutathione), activities of CAT (catalase), SOD (superoxide dismutase) and GPx (selenium-dependent glutathione peroxidase)), and pathohistological and morphometric features of liver damage were analyzed. The most significant positive change in the studied biochemical parameters (up to 29 ± 2% relative to the control), as markers of liver damage, was recorded at the combined administration of alcohol (40% ethanol in drinking water) and water-soluble C60 fullerenes in the optimal dose of 1 mg/kg, which was confirmed by small histopathological changes in the liver of rats. The obtained results prove the prospective use of C60 fullerenes as powerful antioxidants for the mitigation of pathological conditions of the liver arising under prolonged alcohol intoxication.


Asunto(s)
Fulerenos , Hígado , Estrés Oxidativo , Animales , Fulerenos/farmacología , Ratas , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Intoxicación Alcohólica/tratamiento farmacológico , Intoxicación Alcohólica/metabolismo , Ratas Wistar , Nanopartículas/química , Etanol/toxicidad
4.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474314

RESUMEN

The application of a biocompatible polymer nanocarrier can provide target delivery to tumor tissues, improved pharmacokinetics, controlled drug release, etc. Therefore, the proposed strategy was to use the water-soluble star-like copolymers with a Dextran core and Poly(N-isopropylacrylamide) grafts (D-g-PNIPAM) for conjugation with the widely used chemotherapy drugs in oncology-Cisplatin (Cis-Pt) and Doxorubicin (Dox). The molecular characteristics of the copolymer were received using size-exclusion chromatography. The physicochemical characterization of the D-g-PNIPAM-Cis-Pt (or Dox) nanosystem was conducted using dynamic light scattering and FTIR spectroscopy. Using traditional biochemical methods, a comparative analysis of the enhancement of the cytotoxic effect of free Cis-Pt and Dox in combination with D-g-PNIPAM copolymers was performed in cancer cells of the Lewis lung carcinoma line, which are both sensitive and resistant to Dox; in addition, the mechanism of their action in vitro was evaluated.


Asunto(s)
Resinas Acrílicas , Antineoplásicos , Polímeros , Polímeros/química , Agua , Antineoplásicos/uso terapéutico , Doxorrubicina/química , Portadores de Fármacos/química , Micelas
5.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226976

RESUMEN

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos T Citotóxicos , Humanos , Receptores ErbB , Tejido Adiposo , Ciclo Celular
6.
Pharmaceutics ; 15(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38004594

RESUMEN

Cancer sonodynamic therapy (SDT) is the therapeutic strategy of a high-frequency ultrasound (US) combined with a special sonosensitizer that becomes cytotoxic upon US exposure. The growing number of newly discovered sonosensitizers and custom US in vitro treatment solutions push the SDT field into a need for systemic studies and reproducible in vitro experimental set-ups. In the current research, we aimed to compare two of the most used and suitable SDT in vitro set-ups-"sealed well" and "transducer in well"-in one systematic study. We assessed US pressure, intensity, and temperature distribution in wells under US irradiation. Treatment efficacy was evaluated for both set-ups towards cancer cell lines of different origins, treated with two promising sonosensitizer candidates-carbon nanoparticle C60 fullerene (C60) and herbal alkaloid berberine. C60 was found to exhibit higher sonotoxicity toward cancer cells than berberine. The higher efficacy of sonodynamic treatment with a "transducer in well" set-up than a "sealed well" set-up underlined its promising application for SDT in vitro studies. The "transducer in well" set-up is recommended for in vitro US treatment investigations based on its US-field homogeneity and pronounced cellular effects. Moreover, SDT with C60 and berberine could be exploited as a promising combinative approach for cancer treatment.

7.
Adv Mater ; 35(40): e2305006, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572365

RESUMEN

The energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions. This method uses a Langmuir-Schaefer-type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π-conjugated molecules. Using UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi-Langmuir layers and enables the production of films with defined morphology. The variation in nearest-neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square-wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.

8.
Heliyon ; 9(8): e18745, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554800

RESUMEN

The C60 fullerene effect (oral administration at a dose of 1 mg kg-1) on the selected biomechanical parameters of muscle gastrocnemius contraction, biochemical indicators of blood and muscle tissue as well as histological changes in rat muscle tissue after chronic alcoholization for 3, 6 and 9 months was studied in detail. Water-soluble C60 fullerenes were shown to reduce the pathological processes development in the muscle apparatus by an average of (35-40)%. In particular, they reduced the time occurrence of fatigue processes in muscle during the long-term development of alcoholic myopathy and inhibited oxidative processes in muscle, thereby preventing its degradation. These findings open up the possibility of using C60 fullerenes as potent antioxidants for the correction of the pathological conditions of the muscle system arising from alcohol intoxication.

9.
BMC Musculoskelet Disord ; 24(1): 606, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491190

RESUMEN

BACKGROUND: Being a scavenger of free radicals, C60 fullerenes can influence on the physiological processes in skeletal muscles, however, the effect of such carbon nanoparticles on muscle contractility under acute muscle inflammation remains unclear. Thus, the aim of the study was to reveal the effect of the C60 fullerene aqueous solution (C60FAS) on the muscle contractile properties under acute inflammatory pain. METHODS: To induce inflammation a 2.5% formalin solution was injected into the rat triceps surae (TS) muscle. High-frequency electrical stimulation has been used to induce tetanic muscle contraction. A linear motor under servo-control with embedded semi-conductor strain gauge resistors was used to measure the muscle tension. RESULTS: In response to formalin administration, the strength of TS muscle contractions in untreated animals was recorded at 23% of control values, whereas the muscle tension in the C60FAS-treated rats reached 48%. Thus, the treated muscle could generate 2-fold more muscle strength than the muscle in untreated rats. CONCLUSIONS: The attenuation of muscle contraction force reduction caused by preliminary injection of C60FAS is presumably associated with a decrease in the concentration of free radicals in the inflamed muscle tissue, which leads to a decrease in the intensity of nociceptive information transmission from the inflamed muscle to the CNS and thereby promotes the improvement of the functional state of the skeletal muscle.


Asunto(s)
Fulerenos , Ratas , Animales , Fulerenos/farmacología , Ratas Wistar , Agua , Músculo Esquelético , Contracción Muscular , Dolor/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Contracción Isométrica
11.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674528

RESUMEN

The acoustic pressure waves of ultrasound (US) not only penetrate biological tissues deeper than light, but they also generate light emission, termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low-intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng/106 cells). Half of extranuclear C60 is localized within mitochondria. The efficiency of the C60 nanostructure's sonoexcitation with 1 MHz US was tested with cell-based assays. A significant proapoptotic sonotoxic effect of C60 was found for HeLa cells. C60's ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment.


Asunto(s)
Carcinoma , Fulerenos , Fotoquimioterapia , Femenino , Humanos , Fármacos Fotosensibilizantes/farmacología , Fulerenos/farmacología , Células HeLa , Carcinoma/tratamiento farmacológico
13.
Nanoscale Adv ; 4(23): 5077-5088, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36504750

RESUMEN

The development of precision cancer medicine relies on novel formulation strategies for targeted drug delivery to increase the therapeutic outcome. Biocompatible polymer nanoparticles, namely dextran-graft-polyacrylamide (D-g-PAA) copolymers, represent one of the innovative non-invasive approaches for drug delivery applications in cancer therapy. In this study, the star-like D-g-PAA copolymer in anionic form (D-g-PAAan) was developed for pH-triggered targeted drug delivery of the common chemotherapeutic drugs - doxorubicin (Dox) and cisplatin (Cis). The initial D-g-PAA copolymer was synthesized by the radical graft polymerization method, and then alkaline-hydrolyzed to get this polymer in anionic form for further use for drug encapsulation. The acidification of the buffer promoted the release of loaded drugs. D-g-PAAan nanoparticles increased the toxic potential of the drugs against human and mouse lung carcinoma cells (A549 and LLC), but not against normal human lung cells (HEL299). The drug-loaded D-g-PAAan-nanoparticles promoted further oxidative stress and apoptosis induction in LLC cells. D-g-PAAan-nanoparticles improved Dox accumulation and drugs' toxicity in a 3D LLC multi-cellular spheroid model. The data obtained indicate that the strategy of chemotherapeutic drug encapsulation within the branched D-g-PAAan nanoparticle allows not only to realize pH-triggered drug release but also to potentiate its cytotoxic, prooxidant and proapoptotic effects against lung carcinoma cells.

14.
Nanomaterials (Basel) ; 12(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35564261

RESUMEN

The development of an effective therapy aimed at restoring muscle dysfunctions in clinical and sports medicine, as well as optimizing working activity in general remains an urgent task today. Modern nanobiotechnologies are able to solve many clinical and social health problems, in particular, they offer new therapeutic approaches using biocompatible and bioavailable nanostructures with specific bioactivity. Therefore, the nanosized carbon molecule, C60 fullerene, as a powerful antioxidant, is very attractive. In this study, a comparative analysis of the dynamic of muscle soleus fatigue processes in rats was conducted using 50 Hz stimulation for 5 s with three consistent pools after intraperitoneal administration of the following antioxidants: C60 fullerene (a daily dose of 1 mg/kg one hour prior to the start of the experiment) and N-acetylcysteine (NAC; a daily dose of 150 mg/kg one hour prior to the start of the experiment) during five days. Changes in the integrated power of muscle contraction, levels of the maximum and minimum contraction force generation, time of reduction of the contraction force by 50% of its maximum value, achievement of the maximum force response, and delay of the beginning of a single contraction force response were analyzed as biomechanical markers of fatigue processes. Levels of creatinine, creatine phosphokinase, lactate, and lactate dehydrogenase, as well as pro- and antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione, and catalase activity) in the blood of rats were analyzed as biochemical markers of fatigue processes. The obtained data indicate that applied therapeutic drugs have the most significant effects on the 2nd and especially the 3rd stimulation pools. Thus, the application of C60 fullerene has a (50-80)% stronger effect on the resumption of muscle biomechanics after the beginning of fatigue than NAC on the first day of the experiment. There is a clear trend toward a positive change in all studied biochemical parameters by about (12-15)% after therapeutic administration of NAC and by (20-25)% after using C60 fullerene throughout the experiment. These findings demonstrate the promise of using C60 fullerenes as potential therapeutic nanoagents that can reduce or adjust the pathological conditions of the muscular system that occur during fatigue processes in skeletal muscles.

15.
Life (Basel) ; 12(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35330083

RESUMEN

Biomechanical and biochemical changes in the muscle soleus of rats during imitation of hind limbs unuse were studied in the model of the Achilles tendon rupture (Achillotenotomy). Oral administration of water-soluble C60 fullerene at a dose of 1 mg/kg was used as a therapeutic agent throughout the experiment. Changes in the force of contraction and the integrated power of the muscle, the time to reach the maximum force response, the mechanics of fatigue processes development, in particular, the transition from dentate to smooth tetanus, as well as the levels of pro- and antioxidant balance in the blood of rats on days 15, 30 and 45 after injury were described. The obtained results indicate a promising prospect for C60 fullerene use as a powerful antioxidant for reducing and correcting pathological conditions of the muscular system arising from skeletal muscle atrophy.

16.
Heliyon ; 8(12): e12449, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36590525

RESUMEN

C60 fullerene (C60) as a nanocarbon particle, compatible with biological structures, capable of penetrating through cell membranes and effectively scavenging free radicals, is widely used in biomedicine. A protective effect of C60 on the biomechanics of fast (m. gastrocnemius) and slow (m. soleus) muscle contraction in rats and the pro- and antioxidant balance of muscle tissue during the development of muscle fatigue was studied compared to the same effect of the known antioxidant N-acetylcysteine (NAC). C60 and NAC were administered intraperitoneally at doses of 1 and 150 mg kg-1, respectively, daily for 5 days and 1 h before the start of the experiment. The following quantitative markers of muscle fatigue were used: the force of muscle contraction, the level of accumulation of secondary products of lipid peroxidation (TBARS) and the oxygen metabolite H2O2, the activity of first-line antioxidant defense enzymes (superoxide dismutase (SOD) and catalase (CAT)), and the condition of the glutathione system (reduced glutathione (GSH) content and the activity of the glutathione peroxidase (GPx) enzyme). The analysis of the muscle contraction force dynamics in rats against the background of induced muscle fatigue showed, that the effect of C60, 1 h after drug administration, was (15-17)% more effective on fast muscles than on slow muscles. A further slight increase in the effect of C60 was revealed after 2 h of drug injection, (7-9)% in the case of m. gastrocnemius and (5-6)% in the case of m. soleus. An increase in the effect of using C60 occurred within 4 days (the difference between 4 and 5 days did not exceed (3-5)%) and exceeded the effect of NAC by (32-34)%. The analysis of biochemical parameters in rat muscle tissues showed that long-term application of C60 contributed to their decrease by (10-30)% and (5-20)% in fast and slow muscles, respectively, on the 5th day of the experiment. At the same time, the protective effect of C60 was higher compared to NAC by (28-44)%. The obtained results indicate the prospect of using C60 as a potential protective nano agent to improve the efficiency of skeletal muscle function by modifying the reactive oxygen species-dependent mechanisms that play an important role in the processes of muscle fatigue development.

17.
Nanomaterials (Basel) ; 11(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947764

RESUMEN

Single-walled carbon nanotubes (SWCNTs) are characterized by a combination of rather unique physical and chemical properties, which makes them interesting biocompatible nanostructured materials for various applications, including in the biomedical field. SWCNTs are not inert carriers of drug molecules, as they may interact with various biological macromolecules, including ion channels. To investigate the mechanisms of the inhibitory effects of SWCNTs on the muscarinic receptor cation current (mICAT), induced by intracellular GTPγs (200 µM), in isolated mouse ileal myocytes, we have used the patch-clamp method in the whole-cell configuration. Here, we use molecular docking/molecular dynamics simulations and direct patch-clamp recordings of whole-cell currents to show that SWCNTs, purified and functionalized by carboxylation in water suspension containing single SWCNTs with a diameter of 0.5-1.5 nm, can inhibit mICAT, which is mainly carried by TRPC4 cation channels in ileal smooth muscle cells, and is the main regulator of cholinergic excitation-contraction coupling in the small intestinal tract. This inhibition was voltage-independent and associated with a shortening of the mean open time of the channel. These results suggest that SWCNTs cause a direct blockage of the TRPC4 channel and may represent a novel class of TRPC4 modulators.

18.
Materials (Basel) ; 14(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34683705

RESUMEN

Effective targeting of metastasis is considered the main problem in cancer therapy. The development of herbal alkaloid Berberine (Ber)-based anticancer drugs is limited due to Ber' low effective concentration, poor membrane permeability, and short plasma half-life. To overcome these limitations, we used Ber noncovalently bound to C60 fullerene (C60). The complexation between C60 and Ber molecules was evidenced with computer simulation. The aim of the present study was to estimate the effect of the free Ber and C60-Ber nanocomplex in a low Ber equivalent concentration on Lewis lung carcinoma cells (LLC) invasion potential, expression of epithelial-to-mesenchymal transition (EMT) markers in vitro, and the ability of cancer cells to form distant lung metastases in vivo in a mice model of LLC. It was shown that in contrast to free Ber its nanocomplex with C60 demonstrated significantly higher efficiency to suppress invasion potential, to downregulate the level of EMT-inducing transcription factors SNAI1, ZEB1, and TWIST1, to unblock expression of epithelial marker E-cadherin, and to repress cancer stem cells-like markers. More importantly, a relatively low dose of C60-Ber nanocomplex was able to suppress lung metastasis in vivo. These findings indicated that сomplexation of natural alkaloid Ber with C60 can be used as an additional therapeutic strategy against aggressive lung cancer.

19.
Sci Rep ; 11(1): 17748, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493768

RESUMEN

Based on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can't perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Fulerenos/farmacología , Antivirales/uso terapéutico , COVID-19/epidemiología , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/ultraestructura , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Inhibidores de Proteasa de Coronavirus/uso terapéutico , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/ultraestructura , Cristalografía por Rayos X , Fulerenos/química , Fulerenos/uso terapéutico , Humanos , Simulación de Dinámica Molecular , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico , Pandemias/prevención & control , ARN Viral/biosíntesis , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/ultraestructura
20.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202899

RESUMEN

The biomechanical parameters of muscle soleus contraction in rats and their blood biochemical indicators after the intramuscular administration of water-soluble C60 fullerene at doses of 0.5, 1, and 2 mg/kg 1 h before the onset of muscle ischemia were investigated. In particular, changes in the contraction force of the ischemic muscle soleus, the integrated power of the muscle, the time to achieve the maximum force response, the dynamics of fatigue processes, and the parameters of the transition from dentate to smooth tetanus, levels of creatinine, creatine kinase, lactate and lactate dehydrogenase, and parameters of prooxidant-antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, and reduced glutathione and catalase) were analyzed. The positive therapeutic changes in the studied biomechanical and biochemical markers were revealed, which indicate the possibility of using water-soluble C60 fullerenes as effective prophylactic nanoagents to reduce the severity of pathological conditions of the muscular system caused by ischemic damage to skeletal muscles.


Asunto(s)
Materiales Biocompatibles/química , Fulerenos/química , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología , Nanopartículas/química , Sustancias Protectoras/química , Animales , Materiales Biocompatibles/farmacología , Biomarcadores/sangre , Fenómenos Biomecánicos , Fenómenos Químicos , Modelos Animales de Enfermedad , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/etiología , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...