Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(56): e202402338, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39073159

RESUMEN

Porous organic cobaltocenium-containing particles are scarce in literature but highly interesting for their electrochemical properties and reusability in, for example, catalysis or magnetic systems. In this work, we present a scalable one-pot strategy to introduce tailorable amounts of cobaltocenium on a porous substrate, adjusting the electrochemical switching capability. For this purpose, 3-(triethoxysilyl)propan-1-amine (APTES) and ethynyl cobaltocenium hexafluorophosphate is used as functionalization agents for in-situ catalyst-free hydroamination, followed by silane condensation at the particles' surface. Functionalized particles are characterized by attenuated total reflection infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA), laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), inductively coupled plasma mass spectrometry (ICP-MS), powder X-ray diffraction (PXRD) and cyclic voltammetry (CV) showing excellent control over the degree of functionalization, i. e., the added cobaltocenium reagents. The electrochemical stability and good addressability while preserving the porous structure are shown. By utilizing higher amounts of APTES, the overall cobaltocenium amount can be reduced in favor of additional amine groups, strongly affecting the electrochemical behavior, making this functionalization strategy a good platform for metallopolymer immobilization and tailored functionalization. Additionally, thermal treatment of the synthesized metallopolymer microparticles paves the way to magnetic properties with tailorable microporous architectures for end-of-life and upcycling aspects.

2.
ACS Macro Lett ; 12(8): 1019-1024, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37428818

RESUMEN

The synthesis of a water-soluble polycobaltoceniumylmethylene chloride (PCM-Cl) via ring-opening transmetalation polymerization is presented. Starting from a carba[1]magnesocenophane and cobalt(II) chloride, this route gives access to a polymer with methylene-bridged cobaltocenium moieties within the polymers' main-chain. The polymer was characterized by NMR spectroscopy, elemental analysis, TGA, DSC, XRD, and CV measurements, as well as UV-vis spectroscopy. Furthermore, GPC measurements in an aqueous eluent versus pullulan standards were conducted to gain insight into the obtained molar masses and distributions. In addition, the ion-dependent solubility was demonstrated by anion exchange, tuning the hydrophobic/hydrophilic properties of this redox-responsive material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...