Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1009, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823193

RESUMEN

Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.


Asunto(s)
Factores de Transcripción , Pez Cebra , Niño , Animales , Humanos , Factores de Transcripción/genética , ARN Mitocondrial , Pez Cebra/genética , Pez Cebra/metabolismo , ADN Mitocondrial/genética , Transcripción Genética , Mutación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
2.
Hum Mutat ; 43(12): 1970-1978, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36030551

RESUMEN

Primary mitochondrial diseases are a group of genetically and clinically heterogeneous disorders resulting from oxidative phosphorylation (OXPHOS) defects. COX11 encodes a copper chaperone that participates in the assembly of complex IV and has not been previously linked to human disease. In a previous study, we identified that COX11 knockdown decreased cellular adenosine triphosphate (ATP) derived from respiration, and that ATP levels could be restored with coenzyme Q10 (CoQ10 ) supplementation. This finding is surprising since COX11 has no known role in CoQ10 biosynthesis. Here, we report a novel gene-disease association by identifying biallelic pathogenic variants in COX11 associated with infantile-onset mitochondrial encephalopathies in two unrelated families using trio genome and exome sequencing. Functional studies showed that mutant COX11 fibroblasts had decreased ATP levels which could be rescued by CoQ10 . These results not only suggest that COX11 variants cause defects in energy production but reveal a potential metabolic therapeutic strategy for patients with COX11 variants.


Asunto(s)
Enfermedades Mitocondriales , Encefalomiopatías Mitocondriales , Humanos , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo
3.
Hum Mutat ; 43(11): 1609-1628, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35904121

RESUMEN

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo , Islas de CpG/genética , Metilación de ADN/genética , ADN Intergénico , Epigénesis Genética , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Síndrome
4.
JIMD Rep ; 63(3): 240-249, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35433172

RESUMEN

Variants of uncertain significance (VUS) are commonly found following genomic sequencing, particularly in ethnically diverse populations that are underrepresented in large population databases. Functional characterization of VUS may assist in variant reclassification, however these studies are not readily available and often rely on research funding and good will. We present four individuals from three families at different stages of their diagnostic trajectory with recurrent acute liver failure (RALF) and biallelic NBAS variants, confirmed by either trio analysis or cDNA studies. Functional characterization was undertaken, measuring NBAS and p31 levels by Western blotting, demonstrating reduced NBAS levels in two of three families, and reduced p31 levels in all three families. These results provided functional characterization of the molecular impact of a missense VUS, allowing reclassification of the variant and molecular confirmation of NBAS-associated RALF. Importantly, p31 was decreased in all individuals, including an individual with two missense variants where NBAS protein levels were preserved. These results highlight the importance of access to timely functional studies after identification of putative variants, and the importance of considering a range of assays to validate variants whose pathogenicity is uncertain. We suggest that funding models for genomic sequencing should consider incorporating capabilities for adjunct RNA, protein, biochemical, and other specialized tests to increase the diagnostic yield which will lead to improved medical care, increased equity, and access to molecular diagnoses for all patients.

6.
HGG Adv ; 3(1): 100075, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35047860

RESUMEN

Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.

7.
Eur J Hum Genet ; 30(5): 577-586, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34099885

RESUMEN

The diagnostic and clinical benefits of genomic sequencing are being increasingly demonstrated across multiple rare genetic conditions. Despite the expanding clinical literature, there is a significant paucity of health economics evidence to inform the prioritization and implementation of genomic sequencing. This study aims to evaluate whether genomic sequencing for pediatric-onset mitochondrial disorders (MDs) is cost-effective and cost-beneficial relative to conventional care from an Australian healthcare system perspective. Two independent and complementary health economic modeling approaches were used. Approach 1 used a decision tree to model the costs and outcomes associated with genomic sequencing and conventional care. Approach 2 used a discrete-event simulation to incorporate heterogeneity in the condition and clinical practice. Deterministic and probabilistic sensitivity analyses were performed. Genomic sequencing was less costly and more effective compared with conventional care, saving AU$1997 (Approach 1) to AU$8823 (Approach 2) per child tested, while leading to an additional 11 (Approach 1) to 14 (Approach 2) definitive diagnoses per 100 children tested. The mean monetary value of the incremental benefits of genomic sequencing was estimated at AU$5890 (95% CI: AU$5730-$6046). Implementation of genomic sequencing for MDs in Australia could translate to an annual cost-saving of up to AU$0.7 million. Genomic sequencing is cost-saving relative to traditional investigative approaches, while enabling more diagnoses to be made in a timely manner, offering substantial personal benefits to children and their families. Our findings support the prioritization of genomic sequencing for children with MDs.


Asunto(s)
Familia , Enfermedades Mitocondriales , Australia , Niño , Análisis Costo-Beneficio , Genómica , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Raras
8.
Intern Med J ; 52(1): 110-120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34505344

RESUMEN

This document provides consensus-based recommendations for general physicians and primary care physicians who diagnose and manage patients with mitochondrial diseases (MD). It builds on previous international guidelines, with particular emphasis on clinical management in the Australian setting. This statement was prepared by a working group of medical practitioners, nurses and allied health professionals with clinical expertise and experience in managing Australian patients with MD. As new treatments and management plans emerge, these consensus-based recommendations will continue to evolve, but current standards of care are summarised in this document.


Asunto(s)
Enfermedades Mitocondriales , Nivel de Atención , Australia/epidemiología , Consenso , Guías como Asunto , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/terapia , Sociedades Médicas
9.
Genes (Basel) ; 12(4)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924034

RESUMEN

Mitochondrial diseases can be caused by pathogenic variants in nuclear or mitochondrial DNA-encoded genes that often lead to multisystemic symptoms and can have any mode of inheritance. Using a single test, Genome Sequencing (GS) can effectively identify variants in both genomes, but it has not yet been universally used as a first-line approach to diagnosing mitochondrial diseases due to related costs and challenges in data analysis. In this article, we report three patients with mitochondrial disease molecularly diagnosed through GS performed on DNA extracted from blood to demonstrate different diagnostic advantages of this technology, including the detection of a low-level heteroplasmic pathogenic variant, an intragenic nuclear DNA deletion, and a large mtDNA deletion. Current technical improvements and cost reductions are likely to lead to an expanded routine diagnostic usage of GS and of the complementary "Omic" technologies in mitochondrial diseases.


Asunto(s)
ADN/sangre , Variación Genética , Enfermedades Mitocondriales/diagnóstico , Secuenciación Completa del Genoma/métodos , Adolescente , Preescolar , Diagnóstico Precoz , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Enfermedades Mitocondriales/sangre , Enfermedades Mitocondriales/genética
10.
Med ; 2(1): 49-73, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33575671

RESUMEN

BACKGROUND: In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. METHODS: Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. FINDINGS: We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. CONCLUSIONS: ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. FUNDING: Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Enfermedades Mitocondriales , ATPasas Asociadas con Actividades Celulares Diversas/genética , Australia , Niño , Humanos , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Estados Unidos
11.
Hum Genet ; 139(10): 1325-1343, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32399598

RESUMEN

Perrault syndrome is a rare heterogeneous condition characterised by sensorineural hearing loss and premature ovarian insufficiency. Additional neuromuscular pathology is observed in some patients. There are six genes in which variants are known to cause Perrault syndrome; however, these explain only a minority of cases. We investigated the genetic cause of Perrault syndrome in seven affected individuals from five different families, successfully identifying the cause in four patients. This included previously reported and novel causative variants in known Perrault syndrome genes, CLPP and LARS2, involved in mitochondrial proteolysis and mitochondrial translation, respectively. For the first time, we show that pathogenic variants in PEX6 can present clinically as Perrault syndrome. PEX6 encodes a peroxisomal biogenesis factor, and we demonstrate evidence of peroxisomal dysfunction in patient serum. This study consolidates the clinical overlap between Perrault syndrome and peroxisomal disorders, and highlights the need to consider ovarian function in individuals with atypical/mild peroxisomal disorders. The remaining patients had variants in candidate genes such as TFAM, involved in mtDNA transcription, replication, and packaging, and GGPS1 involved in mevalonate/coenzyme Q10 biosynthesis and whose enzymatic product is required for mouse folliculogenesis. This genomic study highlights the diverse molecular landscape of this poorly understood syndrome.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Aminoacil-ARNt Sintetasas/genética , Proteínas de Unión al ADN/genética , Dimetilaliltranstransferasa/genética , Endopeptidasa Clp/genética , Farnesiltransferasa/genética , Predisposición Genética a la Enfermedad , Geraniltranstransferasa/genética , Disgenesia Gonadal 46 XX/genética , Pérdida Auditiva Sensorineural/genética , Proteínas Mitocondriales/genética , Factores de Transcripción/genética , Adolescente , Adulto , Secuencia de Bases , Niño , ADN Mitocondrial/genética , Femenino , Expresión Génica , Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/patología , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ovario/metabolismo , Ovario/patología , Linaje , Peroxisomas/metabolismo , Peroxisomas/patología
12.
Genet Med ; 22(7): 1254-1261, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32313153

RESUMEN

PURPOSE: The utility of genome sequencing (GS) in the diagnosis of suspected pediatric mitochondrial disease (MD) was investigated. METHODS: An Australian cohort of 40 pediatric patients with clinical features suggestive of MD were classified using the modified Nijmegen mitochondrial disease severity scoring into definite (17), probable (17), and possible (6) MD groups. Trio GS was performed using DNA extracted from patient and parent blood. Data were analyzed for single-nucleotide variants, indels, mitochondrial DNA variants, and structural variants. RESULTS: A definitive MD gene molecular diagnosis was made in 15 cases and a likely MD molecular diagnosis in a further five cases. Causative mitochondrial DNA (mtDNA) variants were identified in four of these cases. Three potential novel MD genes were identified. In seven cases, causative variants were identified in known disease genes with no previous evidence of causing a primary MD. Diagnostic rates were higher in patients classified as having definite MD. CONCLUSION: GS efficiently identifies variants in MD genes of both nuclear and mitochondrial origin. A likely molecular diagnosis was identified in 67% of cases and a definitive molecular diagnosis achieved in 55% of cases. This study highlights the value of GS for a phenotypically and genetically heterogeneous disorder like MD.


Asunto(s)
Genoma Mitocondrial , Enfermedades Mitocondriales , Australia , Niño , Mapeo Cromosómico , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Mutación
13.
J Clin Med ; 8(11)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752325

RESUMEN

PNPT1 (PNPase-polynucleotide phosphorylase) is involved in multiple RNA processing functions in the mitochondria. Bi-allelic pathogenic PNPT1 variants cause heterogeneous clinical phenotypes affecting multiple organs without any established genotype-phenotype correlations. Defects in PNPase can cause variable combined respiratory chain complex defects. Recently, it has been suggested that PNPase can lead to activation of an innate immune response. To better understand the clinical and molecular spectrum of patients with bi-allelic PNPT1 variants, we captured detailed clinical and molecular phenotypes of all 17 patients reported in the literature, plus seven new patients, including a 78-year-old male with the longest reported survival. A functional follow-up of genomic sequencing by cDNA studies confirmed a splicing defect in a novel, apparently synonymous, variant. Patient fibroblasts showed an accumulation of mitochondrial unprocessed PNPT1 transcripts, while blood showed an increased interferon response. Our findings suggest that functional analyses of the RNA processing function of PNPase are more sensitive than testing downstream defects in oxidative phosphorylation (OXPHPOS) enzyme activities. This research extends our knowledge of the clinical and functional consequences of bi-allelic pathogenic PNPT1 variants that may guide management and further efforts into understanding the pathophysiological mechanisms for therapeutic development.

14.
Genet Med ; 21(12): 2823-2826, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31171843

RESUMEN

PURPOSE: A recent report has raised the possibility of biparental mitochondrial DNA (mtDNA) inheritance, which could lead to concerns by health-care professionals and patients regarding investigations and genetic counseling of families with pathogenic mitochondrial DNA variants. Our aim was to examine the frequency of this phenomenon by investigating a cohort of patients with suspected mitochondrial disease. METHODS: We studied genome sequencing (GS) data of DNA extracted from blood samples of 41 pediatric patients with suspected mitochondrial disease and their parents. RESULTS: All of the mtDNA variants in the probands segregated with their mother or were apparently de novo. There were no variants that segregated only with the father and none of these families showed evidence of biparental inheritance of their mtDNA. CONCLUSION: Paternal mitochondrial transmission is unlikely to be a common occurrence and therefore at this point we would not recommend changes in clinical practice.


Asunto(s)
ADN Mitocondrial/genética , Herencia Materna/genética , Enfermedades Mitocondriales/genética , Adulto , Secuencia de Bases/genética , Niño , Preescolar , Padre , Femenino , Genes Mitocondriales/genética , Herencia , Humanos , Masculino , Mitocondrias/genética , Enfermedades Mitocondriales/sangre , Madres
15.
Ann Clin Transl Neurol ; 6(3): 515-524, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30911575

RESUMEN

Objectives: Mitochondrial methionyl-tRNA formyltransferase (MTFMT) is required for the initiation of translation and elongation of mitochondrial protein synthesis. Pathogenic variants in MTFMT have been associated with Leigh syndrome (LS) and mitochondrial multiple respiratory chain deficiencies. We sought to elucidate the spectrum of clinical, neuroradiological and molecular genetic findings of patients with bi-allelic pathogenic variants in MTFMT. Methods: Retrospective cohort study combining new cases and previously published cases. Results: Thirty-eight patients with pathogenic variants in MTFMT were identified, including eight new cases. The median age of presentation was 14 months (range: birth to 17 years, interquartile range [IQR] 4.5 years), with developmental delay and motor symptoms being the most frequent initial manifestation. Twenty-nine percent of the patients survived into adulthood. MRI headings in MTFMT pathogenic variants included symmetrical basal ganglia changes (62%), periventricular and subcortical white matter abnormalities (55%), and brainstem lesions (48%). Isolated complex I and combined respiratory chain deficiencies were identified in 31% and 59% of the cases, respectively. Reduction of the mitochondrial complex I and complex IV subunits was identified in the fibroblasts (13/13). Sixteen pathogenic variants were identified, of which c.626C>T was the most common. Seventy-four percent of the patients were alive at their last clinical review (median 6.8 years, range: 14 months to 31 years, IQR 14.5 years). Interpretation: Patients that harbour pathogenic variants in MTFMT have a milder clinical phenotype and disease progression compared to LS caused by other nuclear defects. Fibroblasts may preclude the need for muscle biopsy, to prove causality of any novel variant.


Asunto(s)
Variación Estructural del Genoma/genética , Transferasas de Hidroximetilo y Formilo/genética , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Adolescente , Biopsia , Niño , Preescolar , Estudios de Cohortes , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales , Mutación , Pronóstico , Estudios Retrospectivos
16.
Mol Genet Metab ; 126(1): 77-82, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30558828

RESUMEN

BACKGROUND: In almost half of patients with acute liver failure the cause is unknown, making targeted treatment and decisions about liver transplantation a challenge. Monogenic disorders may contribute to a significant proportion of these undiagnosed patients, and so the incorporation of technologies such as next generation sequencing (NGS) in the clinic could aid in providing a definitive diagnosis. However, this technology may present a major challenge in interpretation of sequence variants, particularly those in non-coding regions. RESULTS: In this report we describe a case of Infantile liver failure syndrome 2 (ILFS2; MIM 616483) due to novel bi-allelic variants in the NBAS gene. A missense variant NM_015909.3(NBAS):c.2617C > T, NP_056993.2(NBAS):p.(Arg873Trp) was identified by whole genome sequencing (WGS). By combining WGS and reverse transcription-polymerase chain reaction (RT-PCR) we were able to identify a novel deep intronic variant, NM_015909.3(NBAS):c.2423 + 404G > C, leading to the inclusion of a pseudo-exon. This mechanism has not been described previously in this syndrome. CONCLUSIONS: This study highlights the utility of analyzing NGS data in conjunction with investigating complementary DNA (cDNA) using techniques such as RT-PCR for detection of variants that otherwise would be likely to be missed in common NGS bioinformatic analysis pipelines. Combining these approaches, particularly when the phenotype match is strong, could lead to an increase in the diagnostic yield in acute liver failure and thus aid in targeted treatment, accurate genetic counseling and restoration of reproductive confidence.


Asunto(s)
Variación Genética , Intrones , Fallo Hepático Agudo/genética , Proteínas de Neoplasias/genética , Alelos , Niño , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fallo Hepático Agudo/diagnóstico , Trasplante de Hígado , Mutación , Fenotipo , Secuenciación Completa del Genoma
18.
Am J Med Genet A ; 176(5): 1225-1231, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29681095

RESUMEN

Achondroplasia-hypochondroplasia (ACH-HCH) complex is caused by the presence of two different pathogenic variants in each allele of FGFR3 gene. Only four patients with confirmed molecular diagnoses have been reported to date, and the phenotype has not been fully defined. Here, we describe a Mexican patient with a confirmed molecular diagnosis of ACH-HCH complex. This patient exhibits intellectual disability, has a history of seizures, experienced multiple cardiorespiratory complications during early childhood, and required foramen magnum decompression. However, he now shows a stable health condition with long-term survival (current age, 18 years). This case is particularly relevant to our understanding of ACH-HCH complex and for the genetic counseling of couples who are affected with ACH or HCH.


Asunto(s)
Acondroplasia/diagnóstico , Huesos/anomalías , Enanismo/diagnóstico , Deformidades Congénitas de las Extremidades/diagnóstico , Lordosis/diagnóstico , Fenotipo , Adolescente , Huesos/diagnóstico por imagen , Heterocigoto , Humanos , Masculino , Imagen Multimodal , Mutación , Pronóstico , Radiografía , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Sobrevivientes
19.
Orphanet J Rare Dis ; 11(1): 102, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27456001

RESUMEN

BACKGROUND: Red cell distribution width (RDW), a classical parameter used in the differential diagnosis of anemia, has recently been recognized as a marker of chronic inflammation and high levels of oxidative stress (OS). Fanconi anemia (FA) is a genetic disorder associated to redox imbalance and dysfunctional response to OS. Clinically, it is characterized by progressive bone marrow failure, which remains the primary cause of morbidity and mortality. Macrocytosis and increased fetal hemoglobin, two indicators of bone marrow stress erythropoiesis, are generally the first hematological manifestations to appear in FA. However, the significance of RDW and its possible relation to stress erythropoiesis have never been explored in FA. In the present study we analyzed routine complete blood counts from 34 FA patients and evaluated RDW, correlating with the hematological parameters most consistently associated with the FA phenotype. RESULTS: We showed, for the first time, that RDW is significantly increased in FA. We also showed that increased RDW is correlated with thrombocytopenia, neutropenia and, most importantly, highly correlated with anemia. Analyzing sequential hemograms from 3 FA patients with different clinical outcomes, during 10 years follow-up, we confirmed a consistent association between increased RDW and decreased hemoglobin, which supports the postulated importance of RDW in the evaluation of hematological disease progression. CONCLUSIONS: This study shows, for the first time, that RDW is significantly increased in FA, and this increment is correlated with neutropenia, thrombocytopenia, and highly correlated with anemia. According to the present results, it is suggested that increased RDW can be a novel marker of stress erythropoiesis in FA.


Asunto(s)
Biomarcadores/metabolismo , Eritrocitos/metabolismo , Eritropoyesis/fisiología , Anemia de Fanconi/patología , Adolescente , Niño , Preescolar , Citogenética , Eritrocitos/fisiología , Eritropoyesis/genética , Anemia de Fanconi/fisiopatología , Femenino , Humanos , Masculino , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA