Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Toxicol ; 6: 1287863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706568

RESUMEN

There is increased emphasis on understanding cumulative risk from the combined effects of chemical and non-chemical stressors as it relates to public health. Recent animal studies have identified pulmonary inflammation as a possible modifier and risk factor for chemical toxicity in the lung after exposure to inhaled pollutants; however, little is known about specific interactions and potential mechanisms of action. In this study, primary human bronchial epithelial cells (HBEC) cultured in 3D at the air-liquid interface (ALI) are utilized as a physiologically relevant model to evaluate the effects of inflammation on toxicity of polycyclic aromatic hydrocarbons (PAHs), a class of contaminants generated from incomplete combustion of fossil fuels. Normal HBEC were differentiated in the presence of IL-13 for 14 days to induce a profibrotic phenotype similar to asthma. Fully differentiated normal and IL-13 phenotype HBEC were treated with benzo[a]pyrene (BAP; 1-40 µg/mL) or 1% DMSO/PBS vehicle at the ALI for 48 h. Cells were evaluated for cytotoxicity, barrier integrity, and transcriptional biomarkers of chemical metabolism and inflammation by quantitative PCR. Cells with the IL-13 phenotype treated with BAP result in significantly (p < 0.05) decreased barrier integrity, less than 50% compared to normal cells. The effect of BAP in the IL-13 phenotype was more apparent when evaluating transcriptional biomarkers of barrier integrity in addition to markers of mucus production, goblet cell hyperplasia, type 2 asthmatic inflammation and chemical metabolism, which all resulted in dose-dependent changes (p < 0.05) in the presence of BAP. Additionally, RNA sequencing data showed that the HBEC with the IL-13 phenotype may have increased potential for uncontrolled proliferation and decreased capacity for immune response after BAP exposure compared to normal phenotype HBEC. These data are the first to evaluate the role of combined environmental factors associated with inflammation from pre-existing disease and PAH exposure on pulmonary toxicity in a physiologically relevant human in vitro model.

2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673911

RESUMEN

One of the most significant challenges in human health risk assessment is to evaluate hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate phases in ambient air pollution associated with petrochemicals from Superfund sites and the burning of fossil fuels. However, little is understood about how PAHs in mixtures contribute to toxicity in lung cells. To investigate mixture interactions and component additivity from environmentally relevant PAHs, two synthetic mixtures were created from PAHs identified in passive air samplers at a legacy creosote site impacted by wildfires. The primary human bronchial epithelial cells differentiated at the air-liquid interface were treated with PAH mixtures at environmentally relevant proportions and evaluated for the differential expression of transcriptional biomarkers related to xenobiotic metabolism, oxidative stress response, barrier integrity, and DNA damage response. Component additivity was evaluated across all endpoints using two independent action (IA) models with and without the scaling of components by toxic equivalence factors. Both IA models exhibited trends that were unlike the observed mixture response and generally underestimated the toxicity across dose suggesting the potential for non-additive interactions of components. Overall, this study provides an example of the usefulness of mixture toxicity assessment with the currently available methods while demonstrating the need for more complex yet interpretable mixture response evaluation methods for environmental samples.


Asunto(s)
Células Epiteliales , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Modelos Biológicos , Contaminantes Atmosféricos/toxicidad , Células Cultivadas , Bronquios/metabolismo , Bronquios/citología , Bronquios/efectos de los fármacos , Biomarcadores
3.
Regul Toxicol Pharmacol ; 144: 105482, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634699

RESUMEN

Consumer use of hemp-derived products continues to rise, underscoring the need to establish evidence-based safety guidance. The present study sought to develop recommendations for oral upper intake limits of cannabidiol (CBD) isolate. Sufficiently robust and reliable data for this purpose were identified from published human clinical trials and guideline-compliant toxicity studies in animal models. Based on the metrics used in this assessment, a potential Acceptable Daily Intake (ADI) value of 0.43 mg/kg-bw/d (e.g., 30 mg/d for 70-kg adult) was determined for the general population based on liver effects in human studies. This value applies to the most sensitive subpopulations, including children, over a lifetime of exposure and from all sources, including food. For dietary supplements with adequate product labeling intended for use by healthy adults only, a potential Upper Intake Limit (UL) of 70 mg/d was determined based on reproductive effects in animals. For healthy adults, except those trying to conceive, or currently pregnant or lactating, a conservative dietary supplement UL of 100 mg/d was identified based on liver effects; however, as the target population excludes individuals at risk for liver injury, an alternative dietary supplement UL of 160 mg/d for this population can also be considered.

4.
Food Chem Toxicol ; 172: 113549, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36493943

RESUMEN

Aspartame has been studied extensively and evaluated for its safety in foods and beverages yet concerns for its potential carcinogenicity have persisted, driven primarily by animal studies conducted at the Ramazzini Institute (RI). To address this controversy, an updated systematic review of available human, animal, and mechanistic data was conducted leveraging critical assessment tools to consider the quality and reliability of data. The evidence base includes 12 animal studies and >40 epidemiological studies reviewed by the World Health Organization which collectively demonstrate a lack of carcinogenic effect. Assessment of >1360 mechanistic endpoints, including many guideline-based genotoxicity studies, demonstrate a lack of activity associated with endpoints grouped to key characteristics of carcinogens. Other non-specific mechanistic data (e.g., mixed findings of oxidative stress across study models, tissues, and species) do not provide evidence of a biologically plausible carcinogenic pathway associated with aspartame. Taken together, available evidence supports that aspartame consumption is not carcinogenic in humans and that the inconsistent findings of the RI studies may be explained by flaws in study design and conduct (despite additional analyses to address study limitations), as acknowledged by authoritative bodies.


Asunto(s)
Aspartame , Edulcorantes , Animales , Humanos , Aspartame/toxicidad , Carcinogénesis , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Reproducibilidad de los Resultados , Edulcorantes/toxicidad
5.
Toxics ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36355943

RESUMEN

There is a growing need to establish alternative approaches for mixture safety assessment of polycyclic aromatic hydrocarbons (PAHs). Due to limitations with current component-based approaches, and the lack of established methods for using whole mixtures, a promising alternative is to use sufficiently similar mixtures; although, an established framework is lacking. In this study, several approaches are explored to form sufficiently similar mixtures. Multiple data streams including environmental concentrations and empirically and predicted toxicity data for cancer and non-cancer endpoints were used to prioritize chemical components for mixture formations. Air samplers were analyzed for unsubstituted and alkylated PAHs. A synthetic mixture of identified PAHs was created (Creosote-Fire Mix). Existing toxicity values and chemical concentrations were incorporated to identify hazardous components in the Creosote-Fire Mix. Sufficiently similar mixtures of the Creosote-Fire Mix were formed based on (1) relative abundance; (2) toxicity values; and (3) a combination approach incorporating toxicity and abundance. Hazard characterization of these mixtures was performed using high-throughput screening in primary normal human bronchial epithelium (NHBE) and zebrafish. Differences in chemical composition and potency were observed between mixture formation approaches. The toxicity-based approach (Tox Mix) was the most potent mixture in both models. The combination approach (Weighted-Tox Mix) was determined to be the ideal approach due its ability to prioritize chemicals with high exposure and hazard potential.

6.
Artículo en Inglés | MEDLINE | ID: mdl-35409514

RESUMEN

A 2019 retrospective study analyzed wristband personal samplers from fourteen different communities across three different continents for over 1530 organic chemicals. Investigators identified fourteen chemicals (G14) detected in over 50% of personal samplers. The G14 represent a group of chemicals that individuals are commonly exposed to, and are mainly associated with consumer products including plasticizers, fragrances, flame retardants, and pesticides. The high frequency of exposure to these chemicals raises questions of their potential adverse human health effects. Additionally, the possibility of exposure to mixtures of these chemicals is likely due to their co-occurrence; thus, the potential for mixtures to induce differential bioactivity warrants further investigation. This study describes a novel approach to broadly evaluate the hazards of personal chemical exposures by coupling data from personal sampling devices with high-throughput bioactivity screenings using in vitro and non-mammalian in vivo models. To account for species and sensitivity differences, screening was conducted using primary normal human bronchial epithelial (NHBE) cells and early life-stage zebrafish. Mixtures of the G14 and most potent G14 chemicals were created to assess potential mixture effects. Chemical bioactivity was dependent on the model system, with five and eleven chemicals deemed bioactive in NHBE and zebrafish, respectively, supporting the use of a multi-system approach for bioactivity testing and highlighting sensitivity differences between the models. In both NHBE and zebrafish, mixture effects were observed when screening mixtures of the most potent chemicals. Observations of BMC-based mixtures in NHBE (NHBE BMC Mix) and zebrafish (ZF BMC Mix) suggested antagonistic effects. In this study, consumer product-related chemicals were prioritized for bioactivity screening using personal exposure data. High-throughput high-content screening was utilized to assess the chemical bioactivity and mixture effects of the most potent chemicals.


Asunto(s)
Retardadores de Llama , Plaguicidas , Animales , Retardadores de Llama/toxicidad , Compuestos Orgánicos , Estudios Retrospectivos , Pez Cebra
7.
Pharmacol Ther ; 225: 107837, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33753133

RESUMEN

Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.


Asunto(s)
Vapeo , Química , Humanos , Toxicología , Vapeo/efectos adversos
8.
Toxicol In Vitro ; 69: 104991, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32890658

RESUMEN

One of the most difficult challenges for risk assessment is evaluation of chemicals that predominately co-occur in mixtures like polycyclic aromatic hydrocarbons (PAHs). We previously developed a classification model in which systems biology data collected from mice short-term after chemical exposure accurately predict tumor outcome. The present study demonstrates translation of this approach into a human in vitro model in which chemical-specific bioactivity profiles from 3D human bronchial epithelial cells (HBEC) classify PAHs by carcinogenic potency. Gene expression profiles were analyzed from HBEC exposed to carcinogenic and non-carcinogenic PAHs and classification accuracies were identified for individual pathway-based gene sets. Posterior probabilities of best performing gene sets were combined via Bayesian integration resulting in a classifier with four gene sets, including aryl hydrocarbon receptor signaling, regulation of epithelial mesenchymal transition, regulation of angiogenesis, and cell cycle G2-M. In addition, transcriptional benchmark dose modeling of benzo[a]pyrene (BAP) showed that the most sensitive gene sets to BAP regulation were largely dissimilar from those that best classified PAH carcinogenicity challenging current assumptions that BAP carcinogenicity (and subsequent mode of action) is reflective of overall PAH carcinogenicity. These results illustrate utility of using systems toxicology approaches to analyze global gene expression towards carcinogenic hazard assessment.


Asunto(s)
Carcinógenos/clasificación , Carcinógenos/toxicidad , Células Epiteliales/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/clasificación , Hidrocarburos Policíclicos Aromáticos/toxicidad , Bronquios/citología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Medición de Riesgo , Biología de Sistemas , Transcriptoma/efectos de los fármacos
9.
Sci Total Environ ; 731: 138497, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434096

RESUMEN

Studies of neonatal health risks of unconventional natural gas development (UNGD) have not included comprehensive assessments of environmental chemical exposures. We investigated a clustering of dysphagic cases in neonatal foals born between 2014 and 2016 in an area of active UNGD in Pennsylvania (PA),USA. We evaluated equine biological data and environmental exposures on the affected PA farm and an unaffected New York (NY) farm owned by the same proprietor. Dams either spent their entire gestation on one farm or moved to the other farm in late gestation. Over the 21-month study period, physical examinations and blood/tissue samples were obtained from mares and foals on each farm. Grab samples of water, pasture soil and feed were collected; continuous passive sampling of air and water for polycyclic aromatic hydrocarbons was performed. Dysphagia was evaluated as a binary variable; logistic regression was used to identify risk factors. Sixty-five foals were born, 17 (all from PA farm) were dysphagic. Odds of dysphagia increased with the dam residing on the PA farm for each additional month of gestation (OR = 1.4, 95% CI 1.2, 1.7, p = 6.0E-04). Males were more likely to be born dysphagic (OR = 5.5, 95% CI 1.2, 24.5, p = 0.03) than females. Prior to installation of a water filtration/treatment system, PA water concentrations of 3,6-dimethylphenanthrene (p = 6.0E-03), fluoranthene (p = 0.03), pyrene (p = 0.02) and triphenylene (p = 0.01) exceeded those in NY water. Compared to NY farm water, no concentrations of PAHs were higher in PA following installation of the water filtration/treatment system. We provide evidence of an uncommon adverse health outcome (dysphagia) in foals born near UNGD that was eliminated in subsequent years (2017-2019) following environmental management changes. Notably, this study demonstrates that domestic large animals such as horses can serve as important sentinels for human health risks associated with UNGD activities.


Asunto(s)
Monitoreo del Ambiente , Gas Natural , Animales , Animales Recién Nacidos , Femenino , Caballos , Humanos , Recién Nacido , Masculino , New York , Evaluación de Resultado en la Atención de Salud , Pennsylvania , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA