Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1293929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38327701

RESUMEN

Introduction: The inherited bone marrow failure syndromes (IBMFSs) are a group of rare disorders characterized by bone marrow failure (BMF), physical abnormalities, and an increased risk of neoplasia. The National Institute of Pediatrics (INP) is a major medical institution in Mexico, where patients with BMF receive a complete approach that includes paraclinical tests. Readily recognizable features, such as the hematological and distinctive physical phenotypes, identified by clinical dysmorphologists, remain crucial for the diagnosis and management of these patients, particularly in circumstances where next-generation sequencing (NGS) is not easily available. Here, we describe a group of Mexican patients with a high clinical suspicion of an IBMFS. Methods: We performed a systematic retrospective analysis of the medical records of patients who had a high IBMFS suspicion at our institution from January 2018 to July 2021. An initial assessment included first ruling out acquired causes of BMF by the Hematology Department and referral of the patient to the Department of Human Genetics for physical examination to search for specific phenotypes suggesting an IBMFS. Patients with high suspicion of having an IBMFS were classified into two main groups: 1) specific IBMFS, including dyskeratosis congenita (DC), Diamond-Blackfan anemia (DBA), Shwachman-Diamond syndrome (SDS), thrombocytopenia with absent radii (TAR), and severe congenital neutropenia (SCN); 2) undefined IBMFS (UI). Results: We established a high suspicion of having an IBMFS in 48 patients. At initial evaluation, the most common hematologic features were bicytopenia (20%) and aplastic anemia (16%); three patients received hematopoietic stem cell transplantation. Among patients with a suspicion of an IBMFS, the most common physical abnormality was minor craniofacial features in 83% of patients and neurodevelopmental disorders in 52%. The specific suspicions that we built were DBA (31%), SDS (18%), DC (14%), TAR (4%), and SCN (4%), whereas 27% of cases remained as undefined IBMFS. SDS, TAR, and SCN were more commonly suspected at an earlier age (<1 year), followed by DBA (2 years) and DC (5 years). Conclusions: Thorough examination of reported clinical data allowed us to highly suspect a specific IBMFS in approximately 70% of patients; however, an important number of patients remained with suspicion of an undefined IBMFS. Implementation of NGS and telomere length measurement are forthcoming measures to improve IBMFS diagnosis in Mexico.

2.
BMC Microbiol ; 18(1): 129, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305031

RESUMEN

BACKGROUND: Rhodobacter sphaeroides has two sets of flagellar genes, fla1 and fla2, that are responsible for the synthesis of two different flagellar structures. The expression of the fla2 genes is under control of CtrA. In several α-proteobacteria CtrA is also required for the expression of the flagellar genes, but the architecture of CtrA-dependent promoters has only been studied in detail in Caulobacter crescentus. In many cases the expression of fla genes originates from divergent promoters located a few base pairs apart, suggesting a particular arrangement of the cis-acting sites. RESULTS: Here we characterized several control regions of the R. sphaeroides fla2 genes and analyzed in detail two regions containing the divergent promoters flgB2p-fliI2p, and fliL2p-fliF2p. Binding sites for CtrA of these promoters were identified in silico and tested by site directed mutagenesis. We conclude that each one of these promoter regions has a particular arrangement, either a single CtrA binding site for activation of fliL2p and fliF2p, or two independent sites for activation of flgB2p and fliI2p. ChIP experiments confirmed that CtrA binds to the control region containing the flgB2 and fliI2 promoters, supporting the notion that CtrA directly controls the expression of the fla2 genes. The flgB and fliI genes are syntenic and show a short intercistronic region in closely related bacterial species. We analyzed these regions and found that the arrangement of the CtrA binding sites varies considerably. CONCLUSIONS: The results in this work reveal the arrangement of the fla2 divergent promoters showing that CtrA promotes transcriptional activation using more than a single architecture.


Asunto(s)
Proteínas Bacterianas/genética , Flagelos/metabolismo , Regiones Promotoras Genéticas , Rhodobacter sphaeroides/genética , Activación Transcripcional , Sitios de Unión/genética , Quimiotaxis , ADN Intergénico/genética , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...