Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36558795

RESUMEN

Eurotium halophilicum is psychrotolerant, halophilic, and one of the most-extreme xerophiles in Earth's biosphere. We already know that this ascomycete grows close to 0 °C, at high NaCl, and-under some conditions-down to 0.651 water-activity. However, there is a paucity of information about how it achieves this extreme stress tolerance given the dynamic water regimes of the surface habitats on which it commonly occurs. Here, against the backdrop of global climate change, we investigated the biophysical interactions of E. halophilicum with its extracellular environment using samples taken from the surfaces of library books. The specific aims were to examine its morphology and extracellular environment (using scanning electron microscopy for visualisation and energy-dispersive X-ray spectrometry to identify chemical elements) and investigate interactions with water, ions, and minerals (including analyses of temperature and relative humidity conditions and determinations of salt deliquescence and water activity of extracellular brine). We observed crystals identified as eugsterite (Na4Ca(SO4)3·2H2O) and mirabilite (Na2SO4·10H2O) embedded within extracellular polymeric substances and provide evidence that E. halophilicum uses salt deliquescence to maintain conditions consistent with its water-activity window for growth. In addition, it utilizes a covering of hair-like microfilaments that likely absorb water and maintain a layer of humid air adjacent to the hyphae. We believe that, along with compatible solutes used for osmotic adjustment, these adaptations allow the fungus to maintain hydration in both space and time. We discuss these findings in relation to the conservation of books and other artifacts within the built environment, spoilage of foods and feeds, the ecology of E. halophilicum in natural habitats, and the current episode of climate change.

2.
Planet Sci J ; 2(6): 235, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34913034

RESUMEN

Morphometric studies of impact craters on icy moons can be used to understand modification of crater topography. Several processes (e.g., viscous relaxation, ejecta deposition, repeated and overlapping impacts) act to shallow crater depth and relax the crater wall slope to similar or varying extents. Resolving these processes can help constrain the interior structure and surface properties of icy moons. Here, using morphometric measurements of craters on Rhea, we aim to constrain the processes that led to the observed crater population. We measured crater diameter, depth, and wall slope, as well as overall crater morphology (e.g., simple versus complex craters). Our results indicate that there exists a linear correlation between impact crater depth-to-diameter ratio and crater wall slope. This may suggest that the dominant modification process on Rhea is one that affects both properties simultaneously, which supports past heating events as the primary post-impact modification process. Additionally, the simple-to-complex crater transition for Rhea was found to be 12 ± 2 km, which is consistent with reported transition diameters for comparably sized icy bodies, indicating similar surface properties. A transition to shallower crater depths for large complex craters was not documented, indicating the absence of a rheological transition at depth in Rhea's icy lithosphere, which may support the interpretation that Rhea is not fully differentiated.

3.
Astrobiology ; 21(8): 1017-1027, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34382857

RESUMEN

Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine whether environments are habitable, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science, and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Planetas
4.
Astrobiology ; 21(8): 893-905, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406807

RESUMEN

The physical processes active during the first billion years (FBY) of Earth's history, such as accretion, differentiation, and impact cratering, provide constraints on the initial conditions that were conducive to the formation and establishment of life on Earth. This motivated the Lunar and Planetary Institute's FBY topical initiative, which was a four-part conference series intended to look at each of these physical processes to study the basic structure and composition of our Solar System that was set during the FBY. The FBY Habitability conference, held in September 2019, was the last in this series and was intended to synthesize the initiative; specifically, to further our understanding of the origins of life, planetary and environmental habitability, and the search for life beyond Earth. The conference included discussions of planetary habitability and the potential emergence of life on bodies within our Solar System, as well as extrasolar systems by applying our knowledge of the Solar System's FBY, and in particular Earth's early history. To introduce this Special Collection, which resulted from work discussed at the conference, we provide a review of the main themes and a synopsis of the FBY Habitability conference.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Planetas , Sistema Solar
5.
Planet Sci J ; 2(2): 83, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35005622

RESUMEN

We examine the H2O ice phase on the surface of Dione, one of Saturn's icy satellites, to investigate whether it might harbor cryovolcanic activity induced by a subcrustal body of water. Several studies have searched for such a signature, as summarized in Buratti et al.; however, none has yet produced sufficient evidence to dissipate doubts. In the radiation environment characteristic of Saturn's icy moons, the presence of crystalline H2O ice has been used as a marker of a high-temperature region. Because ion bombardment will, over time, drive crystalline ice toward an increasingly amorphous state, the current phase of the H2O ice can be used to gauge the temporal temperature evolution of the surface. We adopt a technique described by Dalle Ore et al. to map the fraction of amorphous to crystalline H2O ice on Dione's surface, observed by the Cassini Visible and Infrared Mapping Spectrometer, and provide an ice exposure age. We focus on a region observed at high spatial resolution and centered on one of the faults of the Wispy Terrain, which is measured to be fully crystalline. By assuming an amorphous to crystalline ice fraction of 5% (i.e., 95% crystallinity), significantly higher than the actual measurement, we obtain an upper limit for the age of the fault of 152 Ma. This implies that the studied fault has been active in the last ~100 Ma, supporting the hypothesis that Dione might still be active or was active a very short time ago, and similarly to Enceladus, might still be harboring a body of liquid water under its crust.

6.
Nat Astron ; 4: 756-761, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33344776

RESUMEN

Special Regions on Mars are defined as environments able to host liquid water that meets certain temperature and water activity requirements that allow known terrestrial organisms to replicate1,2, and therefore could be habitable. Such regions would be a concern for planetary protection policies owing to the potential for forward contamination (biological contamination from Earth). Pure liquid water is unstable on the Martian surface3,4, but brines may be present3,5. Experimental work has shown that brines persist beyond their predicted stability region, leading to metastable liquids8-10. Here we show that (meta)stable brines can form and persist from the equator to high latitudes on the surface of Mars for a few percent of the year for up to six consecutive hours, a broader range than previously thought11,12. However, only the lowest eutectic solutions can form, leading to brines with temperatures of less than 225 K. Our results indicate that (meta)stable brines on the Martian surface and shallow subsurface (a few centimeters deep) are not habitable because their water activities and temperatures fall outside the known tolerances for terrestrial life. Furthermore, (meta)stable brines do not meet the Special Regions requirements, reducing the risk for forward contamination and easing threats related to the exploration of the Martian surface.

7.
Planet Sci J ; 1(3): 64, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34647027

RESUMEN

We combine experimentally verified constraints on brine thermodynamics along with a global circulation model to develop a new extensive framework of brine stability on the surface and subsurface of Mars. Our work considers all major phase changes (i.e., evaporation, freezing, and boiling) and is consistent, regardless of brine composition, so it is applicable to any brine relevant to Mars. We find that equatorial regions typically have temperatures too high for stable brines, while high latitudes are susceptible to permanent freezing. In the subsurface, this trend is reversed, and equatorial regions are more favorable to brine stability, but only for the lowest water activities (and lowest eutectic temperatures). At locations where brines may be stable, we find that their lifetimes can be characterized by two regimes. Above a water activity of ~0.6, brine duration is dominated by evaporation, lasting at most a few minutes per sol. Below a water activity of 0.6, brine duration is bound by freezing or boiling; such brines are potentially stable for up to several consecutive hours per sol. Our work suggests that brines should not be expected near or on the Martian surface, except for low eutectic water activity salts such as calcium or magnesium perchlorate or chlorate, and their (meta)stability on the surface would require contact with atmospheric water vapor or local ice deposits.

8.
J Geophys Res Planets ; 123(5): 1156-1167, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-33294305

RESUMEN

The Mars Science Laboratory (MSL) Rover Environmental Monitoring Station (REMS) has now made continuous in situ meteorological measurements for several Martian years at Gale crater, Mars. Of importance in the search for liquid formation are REMS' measurements of ground temperature and in-air measurements of temperature and relative humidity, which is with respect to ice. Such data can constrain the surface and subsurface stability of brines. Here we use updated calibrations to REMS data and consistent relative humidity comparisons (i.e., with respect to liquid versus with respect to ice) to investigate the potential formation of surface and subsurface liquids throughout MSL's traverse. We specifically study the potential for the deliquescence of calcium perchlorate. Our data analysis suggests that surface brine formation is not favored within the first 1648 sols as there are only two times (sols 1232 and 1311) when humidity-temperature conditions were within error consistent with a liquid phase. On the other hand, modeling of the subsurface environment would support brine production in the shallow subsurface. Indeed, we find that the shallow subsurface for terrains with low thermal inertia (Γ â‰² 300 J m-2 K-1 s-1/2) may be occasionally favorable to brine formation through deliquescence. Terrains with Γ â‰² 175 J m-2 K-1 s-1/2 and albedos of ≳0.25 are the most apt to subsurface brine formation. Should brines form, they would occur around Ls 100°. Their predicted properties would not meet the Special nor Uncertain Region requirements, as such they would not be potential habitable environments to life as we know it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...