Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 46(2): 681-697, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31845079

RESUMEN

The use of low fishmeal/fish oil in marine fish diets affects dietary essential fatty acids (EFAs) composition and concentration and, subsequently, may produce a marginal deficiency of those fatty acids with a direct impact on the fish intestinal physiology. Supplementation of essential fatty acids is necessary to cover the requirements of the different EFAs, including the ones belonging to the n-6 series, such as arachidonic acid (ARA). ARA, besides its structural role in the configuration of the lipid classes of the intestine, plays an important role in the functionality of the gut-associated immune tissue (GALT). The present study aimed to test five levels of dietary ARA (ARA0.5 (0.5%), ARA1 (1%), ARA2 (2%), ARA4 (4%), and ARA6 (6%)) for European sea bass (Dicentrarchus labrax) juveniles in order to determine (a) its effect in selected distal intestine (DI) lipid classes composition and (b) how these changes affected gut bacterial translocation rates and selected GALT-related gene expression pre and post challenge. No differences were found between distal intestines of fish fed with the graded ARA levels in total neutral lipids and total polar lipids. However, DI of fish fed with the ARA6 diet presented a higher (P < 0.05) level of phosphatidylethanolamine (PE) and sphingomyelin (SM) than those DI of fish fed with the ARA0.5 diet. In general terms, fatty acid profiles of DI lipid classes mirrored those of the diet dietary. Nevertheless, selective retention of ARA could be observed in glycerophospholipids when dietary levels are low (diet ARA0.5), as reflected in the higher glycerophospholipids-ARA/dietary-ARA ratio for those animals. Increased ARA dietary supplementation was inversely correlated with eicosapentaenoic acid (EPA) content in lipid classes, when data from fish fed with the diets with the same basal composition (diets ARA1 to ARA6). ARA supplementation did not affect intestinal morphometry, goblet cell number, or fish survival, in terms of gut bacterial translocation, along the challenge test. However, after the experimental infection with Vibrio anguillarum, the relative expression of cox-2 and il-1ß were upregulated (P < 0.05) in DI of fish fed with the diets ARA0.5 and ARA2 compared with fish fed with the rest of the experimental diets. Although dietary ARA did not affect fish survival, it altered the fatty acid composition of glycerophospholipids and the expression of pro-inflammatory genes after infection when included at the lowest concentration, which could be compromising the physical and the immune functionality of the DI, denoting the importance of ARA supplementation when low FO diets are used for marine fish.


Asunto(s)
Alimentación Animal , Ácido Araquidónico , Lubina/fisiología , Dieta , Suplementos Dietéticos , Ácidos Grasos , Aceites de Pescado , Intestinos/fisiología , Alimentos Marinos , Animales
2.
Fish Shellfish Immunol ; 81: 10-20, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29981880

RESUMEN

The aim of this study was to assess the effects of dietary mannan oligosaccharides (MOS), Pediococcus acidilactici or their conjunction as a synbiotic in low fish meal (FM) and fish oil (FO) based diets on European sea bass (Dicentrarchus labrax) disease resistance and gut health. For that purpose, sea bass juveniles were fed one of 6 diets containing different combinations of MOS (Biomos® and Actigen©; Alltech, Inc., Kentucky, USA) and Pediococcus acidilactici (BAC, Bactocell®; Lallemand Inc., Cardiff, UK) replacing standard carbohydrates as follows (MOS (%)/BAC (commercial recommendation): high prebiotic level (HP) = 0.6/0, low prebiotic level (LP) = 0.3/0, only probiotic (B) = 0/+, high prebiotic level plus probiotic (HPB) = 0.6/+, low prebiotic level plus probiotic (LPB) = 0.3/+, control (C) = 0/0 for 90 days. After 60 and 90 days of feeding trial, fish were subjected to an experimental infection against Vibrio anguillarum. Additionally, inducible nitric oxide synthase (iNOS) and tumor necrosis factor α (TNFα) gut patterns of immunopositivity and major histocompatibility complex class II (MHCII), transforming growth factor ß (TGF-ß), regulatory T-cell subset (CD4+T lymphocytes) and effector T cell (CD8α+T lymphocytes) gene expression patterns in gut by in situ hybridization were evaluated after 90 days of feeding. The effects of both additives on posterior gut through Gut Associated Lymphoid Tissue (GALT) gene expression was also studied. Fish fed the prebiotic and its combination with P. acidilactici presented increased weight regardless of the dose supplemented after 90 days of feeding, however no effect was detected on somatic indexes. For posterior gut, morphometric patterns and goblet cells density was not affected by MOS, P. acidilactici or its combination. Anti-iNOS and anti-TNFα gut immunopositivity patterns were mainly influenced by MOS supplementation and not by its combination with P. acidilactici. MHCII-ß, TCR-ß, CD4 and CD8-α positive cells distribution and incidence was not affected by diet. Fish fed HP dose presented a clear up-regulation of TNF-α, cyclooxygenase-2 (COX-2), CD4 and IL10, whereas P. acidilactici dietary supplementation increased the number of interleukin-1ß (IL1ß) and COX-2 gene transcripts. Synbiotic supplementation resulted in a reduction of MOS-induced gut humoral proinflammatory response by increasing the expression of some cellular-immune system related genes. Fish mortality after V. anguillarum infection was reduced in fish fed LPB and LP diets compared to fish fed the non-suppelmented diet after 90 days of feeding. Thus, overall pointing to the combination of a low dose of MOS and P. acidilactici as synbiont (LPB) as a viable tool to potentiate European sea bass juvenile's growth and disease resistance when supplemented in low FM and FO diets.


Asunto(s)
Alimentación Animal/análisis , Lubina/fisiología , Tracto Gastrointestinal/inmunología , Mananos/administración & dosificación , Simbióticos/administración & dosificación , Animales , Lubina/inmunología , Grasas Insaturadas en la Dieta , Resistencia a la Enfermedad , Aceites de Pescado , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Inmunidad Mucosa , Prebióticos/administración & dosificación , Probióticos/administración & dosificación , Vibrio , Vibriosis/inmunología
3.
Fish Shellfish Immunol ; 67: 302-311, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28602741

RESUMEN

The aim of this study was to assess the effects of low levels of dietary fish meal (FM) and fish oil (FO) on disease resistance and gut associated lymphoid tissue (GALT) response after an experimental intestinal infection with V. anguillarum in European sea bass (Dicentrarchus labrax) For that purpose, sea bass juveniles were fed one of four diets containing combined levels of FO and FM as follows: 20%FM/6%FO, 20%FM/3%FO, 5%FM/6%FO and 5%FM/3%FO during 153 days. At the end of the feeding trial, fish were subjected to either an in vivo exposure to a sub-lethal dose of V. anguillarum via anal inoculation or to an ex vivo exposure to V. anguillarum. Additionally, inducible nitric oxide synthase (iNOS) and tumor necrosis factor α (TNFα) gut patterns of immunopositivity were studied. Growth performance was affected by dietary FM level, however ex vivo gut bacterial translocation rates and survival after the in vivo challenge test were affected by dietary FO level. After 5 months of feeding, low dietary FM levels led to a posterior gut up-regulation of interleukin-1ß (IL-1ß) and TNFα, major histocompatibility complex-II (MHCII) and cyclooxygenase-2 (COX2), which in turn reduced the gut associated lymphoid tissue (GALT) capacity of response after 24 h post infection and conditioned European sea bass capacity to recover gut homeostasis 7 days post infection. Immunoreactivity to anti-iNOS and anti-TNFα presented a gradient of increased immunopositivity towards the anus, regardless of the dietary FM/FO fed. Strong positive anti-TNFα isolated enterocytes were observed in the anterior gut in relation to low levels of dietary FM/FO. Submucosa and lamina propria immunoreactivity grade was related to the amount of leucocyte populations infiltrated and goblet cells presented immunopositivity to anti-iNOS but not to anti-TNFα. Thus, reducing FO content from 6% to a 3% by VO in European sea bass diets increases ex vivo and in vivo gut bacterial translocation rates, whereas reducing FM content from 20% down to 5% up-regulates the expression of several posterior gut inflammation-related genes conditioning fish growth and GALT capacity of response after bacterial infection.


Asunto(s)
Lubina/inmunología , Suplementos Dietéticos , Resistencia a la Enfermedad , Enfermedades de los Peces/inmunología , Aceites de Pescado/inmunología , Enfermedades Intestinales/veterinaria , Vibriosis/veterinaria , Alimentación Animal , Animales , Dieta/veterinaria , Enfermedades Intestinales/inmunología , Vibrio/fisiología , Vibriosis/inmunología
4.
Fish Shellfish Immunol ; 64: 437-445, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28359945

RESUMEN

The main objective of this study was to assess the effects of graded levels of dietary arachidonic acid (ARA), supplemented from alternative sources, on fatty acid composition of plasma and head kidney leucocytes of European sea bass (Dicentrarchus labrax). For that purpose, sea bass juveniles were fed four diets containing graded levels of ARA as follows: 0.5% (ARA0.5), 1% (ARA1), 2% (ARA2) and 4% (ARA4) during 60 days. At the end of the feeding trial fatty acid profiles of plasma and head kidney leucocytes were analyzed. Besides, plasma prostaglandins levels, head kidney leucocytes respiratory burst activity; peroxidase activity and phagocytic index were assayed. Reducing dietary ARA levels below 1% markedly reduced European sea bass growth performance. However, fish fed diet ARA0.5 tried to compensate this dietary ARA deficiency by a selective deposition of ARA on plasma and head kidney leucocytes, reaching similar levels to those fish fed diet ARA1 after 60 days of feeding. Nevertheless, head kidney phagocytic capacity was reduced as dietary ARA content in relation not only to variations on membrane composition but also to changes on fish basal prostaglandins levels. Results obtained demonstrated the importance to supply the necessary quantity n-6 LC-PUFA, and not only n-3 LC-PUFA levels, in European sea bass diets, in relation to not only growth performance but also immune system function.


Asunto(s)
Ácido Araquidónico/metabolismo , Lubina/inmunología , Suplementos Dietéticos , Ácidos Grasos/sangre , Riñón Cefálico/inmunología , Leucocitos/inmunología , Prostaglandinas/sangre , Alimentación Animal/análisis , Animales , Ácido Araquidónico/administración & dosificación , Lubina/sangre , Lubina/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...