Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0295946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232078

RESUMEN

Climate change imposes physiological constraints on organisms particularly through changing thermoregulatory requirements. Bergmann's and Allen's rules suggest that body size and the size of thermoregulatory structures differ between warm and cold locations, where body size decreases with temperature and thermoregulatory structures increase. However, phenotypic plastic responses to malnutrition during development can result in the same patterns while lacking fitness benefits. The Gulf of Maine (GOM), located at the southern end of the Labrador current, is warming faster than most of the world's oceans, and many of the marine species that occupy these waters exist at the southern edge of their distributions including Atlantic puffins (Fratercula arctica; hereafter "puffin"). Monitoring of puffins in the GOM, at Machias Seal Island (MSI), has continued annually since 1995. We asked whether changes in adult puffin body size and the proportional size of bill to body have changed with observed rapid ocean warming. We found that the size of fledgling puffins is negatively related to sea surface temperature anomalies (warm conditions = small fledgers), adult puffin size is related to fledgling size (small fledgers = small adults), and adult puffins have decreased in size in recent years in response to malnutrition during development. We found an increase in the proportional size of bill to wing chord, likely in response to some mix of malnutrition during development and increasing air temperatures. Although studies have assessed clinal variation in seabird morphology with temperature, this is the first study addressing changes in seabird morphology in relation to ocean warming. Our results suggest that puffins nesting in the GOM have morphological plasticity that may help them acclimate to ocean warming.


Asunto(s)
Charadriiformes , Desnutrición , Animales , Charadriiformes/fisiología , Frío , Océanos y Mares , Temperatura
2.
Emerg Infect Dis ; 29(10): 2116-2120, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640370

RESUMEN

From 2015-2018 to 2019‒2021, hypertoxigenic M1UK lineage among invasive group A Streptococcus increased in the United States (1.7%, 21/1,230 to 11%, 65/603; p<0.001). M1UK was observed in 9 of 10 states, concentrated in Georgia (n = 41), Tennessee (n = 13), and New York (n = 13). Genomic cluster analysis indicated recent expansions.


Asunto(s)
Streptococcus pyogenes , Georgia , New York , Tennessee , Streptococcus pyogenes/genética , Reino Unido
3.
Clin Infect Dis ; 76(3): e1266-e1269, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35684991

RESUMEN

We analyzed 9630 invasive GAS surveillance isolates in the USA. From 2015-2017 to 2018-2019, significant increases in erythromycin-nonsusceptibility (18% vs 25%) and clindamycin-nonsusceptibility (17% vs 24%) occurred, driven by rapid expansions of genomic subclones. Prevention and control of clustered infections appear key to containing antimicrobial resistance.


Asunto(s)
Clindamicina , Infecciones Estreptocócicas , Humanos , Estados Unidos/epidemiología , Clindamicina/farmacología , Eritromicina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Streptococcus pyogenes/genética , Genómica , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Farmacorresistencia Bacteriana/genética
4.
Antimicrob Agents Chemother ; 66(9): e0080222, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35969070

RESUMEN

All known group A streptococci [GAS] are susceptible to ß-lactam antibiotics. We recently identified an invasive GAS (iGAS) variant (emm43.4/PBP2x-T553K) with unusually high minimum inhibitory concentrations (MICs) for ampicillin and amoxicillin, although clinically susceptible to ß-lactams. We aimed to quantitate PBP2x variants, small changes in ß-lactam MICs, and lineages within contemporary population-based iGAS. PBP2x substitutions were comprehensively identified among 13,727 iGAS recovered during 2015-2021, in the USA. Isolates were subjected to antimicrobial susceptibility testing employing low range agar diffusion and PBP2x variants were subjected to phylogenetic analyses. Fifty-five variants were defined based upon substitutions within an assigned PBP2x transpeptidase domain. Twenty-nine of these variants, representing 338/13,727 (2.5%) isolates and 16 emm types, exhibited slightly elevated ß-lactam MICs, none of which were above clinical breakpoints. The emm43.4/PBP2x-T553K variant, comprised of two isolates, displayed the most significant phenotype (ampicillin MIC 0.25 µg/ml) and harbored missense mutations within 3 non-PBP genes with known involvement in antibiotic efflux, membrane insertion of PBP2x, and peptidoglycan remodeling. The proportion of all PBP2x variants with elevated MICs remained stable throughout 2015-2021 (<3.0%). The predominant lineage (emm4/PBP2x-M593T/ermT) was resistant to macrolides/lincosamides and comprised 129/340 (37.9%) of isolates with elevated ß-lactam MICs. Continuing ß-lactam selective pressure is likely to have selected PBP2x variants that had escaped scrutiny due to MICs that remain below clinical cutoffs. Higher MICs exhibited by emm43.4/PBP2x-T553K are probably rare due to the requirement of additional mutations. Although elevated ß-lactam MICs remain uncommon, emm43.4/PBP2x-T553K and emm4/PBP2x-M593T/ermT lineages indicate that antibiotic stewardship and strain monitoring is necessary.


Asunto(s)
Peptidil Transferasas , Agar , Amoxicilina , Ampicilina/farmacología , Antibacterianos/farmacología , Lincosamidas , Macrólidos , Pruebas de Sensibilidad Microbiana , Monobactamas , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano , Peptidil Transferasas/genética , Filogenia , Streptococcus pneumoniae/genética , Streptococcus pyogenes/genética , Estados Unidos , Resistencia betalactámica/genética , beta-Lactamas/farmacología
5.
J Infect Dis ; 225(10): 1841-1851, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788828

RESUMEN

BACKGROUND: The genomic features and transmission link of circulating Group A Streptococcus (GAS) strains causing different disease types, such as pharyngitis and invasive disease, are not well understood. METHODS: We used whole-genome sequencing to characterize GAS isolates recovered from persons with pharyngitis and invasive disease in the Denver metropolitan area from June 2016 to April 2017. RESULTS: The GAS isolates were cultured from 236 invasive and 417 pharyngitis infections. Whole-genome sequencing identified 34 emm types. Compared with pharyngitis isolates, invasive isolates were more likely to carry the erm family genes (23% vs 7.4%, P<.001), which confer resistance to erythromycin and clindamycin (including inducible resistance), and covS gene inactivation (7% vs 0.5%, P<.001). Whole-genome sequencing identified 97 genomic clusters (433 isolates; 2-65 isolates per cluster) that consisted of genomically closely related isolates (median single-nucleotide polymorphism=3 [interquartile range, 1-4] within cluster). Thirty genomic clusters (200 isolates; 31% of all isolates) contained both pharyngitis and invasive isolates and were found in 11 emm types. CONCLUSIONS: In the Denver metropolitan population, mixed disease types were commonly seen in clusters of closely related isolates, indicative of overlapping transmission networks. Antibiotic-resistance and covS inactivation was disproportionally associated with invasive disease.


Asunto(s)
Faringitis , Infecciones Estreptocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Colorado/epidemiología , Farmacorresistencia Bacteriana/genética , Genómica , Humanos , Faringitis/tratamiento farmacológico , Faringitis/epidemiología , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Streptococcus pyogenes
6.
N Engl J Med ; 385(13): 1172-1183, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34192426

RESUMEN

BACKGROUND: Early clinical data from studies of the NVX-CoV2373 vaccine (Novavax), a recombinant nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that contains the full-length spike glycoprotein of the prototype strain plus Matrix-M adjuvant, showed that the vaccine was safe and associated with a robust immune response in healthy adult participants. Additional data were needed regarding the efficacy, immunogenicity, and safety of this vaccine in a larger population. METHODS: In this phase 3, randomized, observer-blinded, placebo-controlled trial conducted at 33 sites in the United Kingdom, we assigned adults between the ages of 18 and 84 years in a 1:1 ratio to receive two intramuscular 5-µg doses of NVX-CoV2373 or placebo administered 21 days apart. The primary efficacy end point was virologically confirmed mild, moderate, or severe SARS-CoV-2 infection with an onset at least 7 days after the second injection in participants who were serologically negative at baseline. RESULTS: A total of 15,187 participants underwent randomization, and 14,039 were included in the per-protocol efficacy population. Of the participants, 27.9% were 65 years of age or older, and 44.6% had coexisting illnesses. Infections were reported in 10 participants in the vaccine group and in 96 in the placebo group, with a symptom onset of at least 7 days after the second injection, for a vaccine efficacy of 89.7% (95% confidence interval [CI], 80.2 to 94.6). No hospitalizations or deaths were reported among the 10 cases in the vaccine group. Five cases of severe infection were reported, all of which were in the placebo group. A post hoc analysis showed an efficacy of 86.3% (95% CI, 71.3 to 93.5) against the B.1.1.7 (or alpha) variant and 96.4% (95% CI, 73.8 to 99.5) against non-B.1.1.7 variants. Reactogenicity was generally mild and transient. The incidence of serious adverse events was low and similar in the two groups. CONCLUSIONS: A two-dose regimen of the NVX-CoV2373 vaccine administered to adult participants conferred 89.7% protection against SARS-CoV-2 infection and showed high efficacy against the B.1.1.7 variant. (Funded by Novavax; EudraCT number, 2020-004123-16.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/prevención & control , Inmunogenicidad Vacunal , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Humanos , Inyecciones Intramusculares/efectos adversos , Persona de Mediana Edad , SARS-CoV-2 , Método Simple Ciego , Vacunas Sintéticas/inmunología , Adulto Joven
7.
Clin Infect Dis ; 72(6): 1004-1013, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32060499

RESUMEN

BACKGROUND: Group B Streptococcus (GBS) is a leading cause of neonatal sepsis and meningitis and an important cause of invasive infections in pregnant and nonpregnant adults. Vaccines targeting capsule polysaccharides and common proteins are under development. METHODS: Using whole genome sequencing, a validated bioinformatics pipeline, and targeted antimicrobial susceptibility testing, we characterized 6340 invasive GBS isolates recovered during 2015-2017 through population-based Active Bacterial Core surveillance (ABCs) in 8 states. RESULTS: Six serotypes accounted for 98.4% of isolates (21.8% Ia, 17.6% V, 17.1% II, 15.6% III, 14.5% Ib, 11.8% IV). Most (94.2%) isolates were in 11 clonal complexes (CCs) comprised of multilocus sequence types identical or closely related to sequence types 1, 8, 12, 17, 19, 22, 23, 28, 88, 452, and 459. Fifty-four isolates (0.87%) had point mutations within pbp2x associated with nonsusceptibility to 1 or more ß-lactam antibiotics. Genes conferring resistance to macrolides and/or lincosamides were found in 56% of isolates; 85.2% of isolates had tetracycline resistance genes. Two isolates carrying vanG were vancomycin nonsusceptible (minimum inhibitory concentration = 2 µg/mL). Nearly all isolates possessed capsule genes, 1-2 of the 3 main pilus gene clusters, and 1 of 4 homologous alpha/Rib family determinants. Presence of the hvgA virulence gene was primarily restricted to serotype III/CC17 isolates (465 isolates), but 8 exceptions (7 IV/CC452 and 1 IV/CC17) were observed. CONCLUSIONS: This first comprehensive, population-based quantitation of strain features in the United States suggests that current vaccine candidates should have good coverage. The ß-lactams remain appropriate for first-line treatment and prophylaxis, but emergence of nonsusceptibility warrants ongoing monitoring.


Asunto(s)
Infecciones Estreptocócicas , Vacunas , Adulto , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Femenino , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Embarazo , Serogrupo , Serotipificación , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Streptococcus agalactiae/genética , Estados Unidos/epidemiología
8.
Front Microbiol ; 11: 1547, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849323

RESUMEN

BACKGROUND: Streptococcus pyogenes is a major cause of severe, invasive infections in humans. The bacterial pathogen harbors a wide array of virulence factors and exhibits high genomic diversity. Rapid changes of circulating strains in a community are common. Understanding the current prevalence and dynamics of S. pyogenes lineages could inform vaccine development and disease control strategies. METHODS: We used whole-genome sequencing (WGS) to characterize all invasive S. pyogenes isolates obtained through the United States Center for Disease Control and Prevention's Active Bacterial Core surveillance (ABCs) in 2016 and 2017. We determined the distribution of strain features, including emm type, antibiotic resistance determinants, and selected virulence factors. Changes in strain feature distribution between years 2016 and 2017 were evaluated. Phylogenetic analysis was used to identify expanding lineages within emm type. RESULTS: Seventy-one emm types were identified from 3873 isolates characterized. The emm types targeted by a 30-valent M protein-based vaccine accounted for 3230 (89%) isolates. The relative frequencies of emm types collected during the 2 years were similar. While all isolates were penicillin-susceptible, erythromycin-resistant isolates increased from 273 (16% of 2016 isolates) to 432 (23% of 2017 isolates), mainly driven by increase of the erm-positive emm types 92 and 83. The prevalence of 24 virulence factors, including 11 streptococcal pyrogenic toxins, ranged from 6 to 90%. In each of three emm types (emm 49, 82, and 92), a subgroup of isolates significantly expanded between 2016 and 2017 compared to isolates outside of the subgroup (P-values < 0.0001). Specific genomic sequence changes were associated with these expanded lineages. CONCLUSIONS: While the overall population structure of invasive S. pyogenes isolates in the United States remained stable, some lineages, including several that were antibiotic-resistant, increased between 2016 and 2017. Continued genomic surveillance can help monitor and characterize bacterial features associated with emerging strains from invasive infections.

10.
mBio ; 8(5)2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928212

RESUMEN

Group A streptococci (GAS) are genetically diverse. Determination of strain features can reveal associations with disease and resistance and assist in vaccine formulation. We employed whole-genome sequence (WGS)-based characterization of 1,454 invasive GAS isolates recovered in 2015 by Active Bacterial Core Surveillance and performed conventional antimicrobial susceptibility testing. Predictions were made for genotype, GAS carbohydrate, antimicrobial resistance, surface proteins (M family, fibronectin binding, T, R28), secreted virulence proteins (Sda1, Sic, exotoxins), hyaluronate capsule, and an upregulated nga operon (encodes NADase and streptolysin O) promoter (Pnga3). Sixty-four M protein gene (emm) types were identified among 69 clonal complexes (CCs), including one CC of Streptococcus dysgalactiae subsp. equisimilisemm types predicted the presence or absence of active sof determinants and were segregated into sof-positive or sof-negative genetic complexes. Only one "emm type switch" between strains was apparent. sof-negative strains showed a propensity to cause infections in the first quarter of the year, while sof+ strain infections were more likely in summer. Of 1,454 isolates, 808 (55.6%) were Pnga3 positive and 637 (78.9%) were accounted for by types emm1, emm89, and emm12 Theoretical coverage of a 30-valent M vaccine combined with an M-related protein (Mrp) vaccine encompassed 98% of the isolates. WGS data predicted that 15.3, 13.8, 12.7, and 0.6% of the isolates were nonsusceptible to tetracycline, erythromycin plus clindamycin, erythromycin, and fluoroquinolones, respectively, with only 19 discordant phenotypic results. Close phylogenetic clustering of emm59 isolates was consistent with recent regional emergence. This study revealed strain traits informative for GAS disease incidence tracking, outbreak detection, vaccine strategy, and antimicrobial therapy.IMPORTANCE The current population-based WGS data from GAS strains causing invasive disease in the United States provide insights important for prevention and control strategies. Strain distribution data support recently proposed multivalent M type-specific and conserved M-like protein vaccine formulations that could potentially protect against nearly all invasive U.S. strains. The three most prevalent clonal complexes share key polymorphisms in the nga operon encoding two secreted virulence factors (NADase and streptolysin O) that have been previously associated with high strain virulence and transmissibility. We find that Streptococcus pyogenes is phylogenetically subdivided into loosely defined multilocus sequence type-based clusters consisting of solely sof-negative or sof-positive strains; with sof-negative strains demonstrating differential seasonal preference for infection, consistent with the recently demonstrated differential seasonal preference based on phylogenetic clustering of full-length M proteins. This might relate to the differences in GAS strain compositions found in different geographic settings and could further inform prevention strategies.


Asunto(s)
Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Variación Genética , Genotipo , Humanos , Filogenia , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/administración & dosificación , Vacunas Estreptocócicas/química , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/aislamiento & purificación , Streptococcus pyogenes/patogenicidad , Estados Unidos/epidemiología , Virulencia , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA