Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(3): 1022-1037, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516592

RESUMEN

Malaria eradication is still a global challenge due to the lack of a broadly effective vaccine and the emergence of drug resistance to most of the currently available drugs as part of the mainline artemisinin-based combination therapy. A variety of experimental approaches are quite successful in identifying and synthesizing new promising pharmacophore hybrids with distinct mechanisms of action. Based on our recent findings, the current study demonstrates the reinvestigation of a series of diphenylmethylpiperazine and pyrazine-derived molecular hybrids. Pyrazine-derived molecular hybrids were screened to investigate the antiplasmodial activity on drug-susceptible Pf3D7 and drug-resistant PfW2 strains. The selected compounds were shown to be potent dual inhibitors of cysteine protease PfFP2 and PfFP3. Time-course parasitic development study demonstrated that compounds were able to arrest the growth of the parasite at the early trophozoite stage. The compounds did not show hemolysis of red blood cells and showed selectivity to the parasite compared with the mammalian Vero and A5489 cell lines. The study underlined HR5 and HR15 as a new class of Plasmodial falcipain inhibitors with an IC50 of 6.2 µM and 5.9 µM for PfFP2 and 6.8 µM and 6.4 µM for PfFP3, respectively. Both compounds have antimalarial efficacy with IC50 values of 3.05 µM and 2.80 µM for the Pf3D7 strain, and 4.35 µM and 3.39 µM for the PfW2 strain, respectively. Further structural optimization may turn them into potential Plasmodial falcipain inhibitors for malaria therapeutics.

2.
PLoS Pathog ; 20(2): e1012045, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416790

RESUMEN

Protein ubiquitination is essential for cellular homeostasis and regulation of several processes, including cell division and genome integrity. Ubiquitin E3 ligases determine substrate specificity for ubiquitination, and Cullin-RING E3 ubiquitin ligases (CRLs) make the largest group among the ubiquitin E3 ligases. Although conserved and most studied in model eukaryotes, CRLs remain underappreciated in Plasmodium and related parasites. To investigate the CRLs of human malaria parasite Plasmodium falciparum, we generated parasites expressing tagged P. falciparum cullin-1 (PfCullin-1), cullin-2 (PfCullin-2), Rbx1 (PfRbx1) and Skp1 (PfSkp1). PfCullin-1 and PfCullin-2 were predominantly expressed in erythrocytic trophozoite and schizont stages, with nucleocytoplasmic localization and chromatin association, suggesting their roles in different cellular compartments and DNA-associated processes. Immunoprecipitation, in vitro protein-protein interaction, and ubiquitination assay confirmed the presence of a functional Skp1-Cullin-1-Fbox (PfSCF) complex, comprising of PfCullin-1, PfRbx1, PfSkp1, PfFBXO1, and calcyclin binding protein. Immunoprecipitation, sequence analysis, and ubiquitination assay indicated that PfCullin-2 forms a functional human CRL4-like complex (PfCRL4), consisting of PfRbx1, cleavage and polyadenylation specificity factor subunit_A and WD40 repeat proteins. PfCullin-2 knock-down at the protein level, which would hinder PfCRL4 assembly, significantly decreased asexual and sexual erythrocytic stage development. The protein levels of several pathways, including protein translation and folding, lipid biosynthesis and transport, DNA replication, and protein degradation were significantly altered upon PfCullin-2 depletion, which likely reflects association of PfCRL4 with multiple pathways. PfCullin-2-depleted schizonts had poorly delimited merozoites and internal membraned structures, suggesting a role of PfCRL4 in maintaining membrane integrity. PfCullin-2-depleted parasites had a significantly lower number of nuclei/parasite than the normal parasites, indicating a crucial role of PfCRL4 in cell division. We demonstrate the presence of functional CRLs in P. falciparum, with crucial roles for PfCRL4 in cell division and maintaining membrane integrity.


Asunto(s)
Plasmodium falciparum , Ubiquitina-Proteína Ligasas , Humanos , División Celular , Proteínas Cullin/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Eur J Med Chem ; 258: 115564, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37321109

RESUMEN

Malaria is a widespread infectious disease, causing nearly 247 million cases in 2021. The absence of a broadly effective vaccine and rapidly decreasing effectiveness of most of the currently used antimalarials are the major challenges to malaria eradication efforts. To design and develop novel antimalarials, we synthesized a series of 4,7-dichloroquinoline and methyltriazolopyrimidine analogues using a multi-component Petasis reaction. The synthesized molecules (11-31) were screened for in-vitro antimalarial activity against drug-sensitive and drug-resistant strains of Plasmodium falciparum with an IC50 value of 0.53 µM. The selected compounds were screened to evaluate in-vitro and in-silico enzyme inhibition efficacy against two cysteine proteases, PfFP2 and PfFP3. The compounds 15 and 17 inhibited PfFP2 with an IC50 = 3.5 and 4.8 µM, respectively and PfFP3 with an IC50 = 4.9 and 4.7 µM, respectively. Compounds 15 and 17 were found equipotent against the Pf3D7 strain with an IC50 value of 0.74 µM, whereas both were displayed IC50 values of 1.05 µM and 1.24 µM for the PfW2 strain, respectively. Investigation of effect of compounds on parasite development demonstrated that compounds were able to arrest the growth of the parasites at trophozoite stage. The selected compounds were screened for in-vitro cytotoxicity against mammalian lines and human red-blood-cell (RBC), which demonstrated no significant cytotoxicity associated with the molecules. In addition, in silico ADME prediction and physiochemical properties supported the drug-likeness of the synthesized molecules. Thus, the results highlighted the diphenylmethylpiperazine group cast on 4,7-dichloroquinoline and methyltriazolopyrimidine using Petasis reaction may serve as models for the development of new antimalarial agents.


Asunto(s)
Antimaláricos , Proteasas de Cisteína , Malaria , Animales , Humanos , Antimaláricos/química , Malaria/tratamiento farmacológico , Plasmodium falciparum , Eritrocitos , Mamíferos
4.
Int J Parasitol ; 53(3): 157-175, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657610

RESUMEN

DNA damage inducible 1 protein (DDI1) is involved in a variety of cellular processes including proteasomal degradation of specific proteins. All DDI1 proteins contain a ubiquitin-like (UBL) domain and a retroviral protease (RVP) domain. Some DDI1 proteins also contain a ubiquitin-associated (UBA) domain. The three domains confer distinct activities to DDI1 proteins. The presence of a RVP domain makes DDI1 a potential target of HIV protease inhibitors, which also block the development of malaria parasites. Hence, we investigated the DDI1 of malaria parasites to identify its roles during parasite development and potential as a therapeutic target. DDI1 proteins of Plasmodium and other apicomplexan parasites share the UBL-RVP domain architecture, and some also contain the UBA domain. Plasmodium DDI1 is expressed across all the major life cycle stages and is important for parasite survival, as conditional depletion of DDI1 protein in the mouse malaria parasite Plasmodium berghei and the human malaria parasite Plasmodium falciparum compromised parasite development. Infection of mice with DDI1 knock-down P. berghei was self-limiting and protected the recovered mice from subsequent infection with homologous as well as heterologous parasites, indicating the potential of DDI1 knock-down parasites as a whole organism vaccine. Plasmodium falciparum DDI1 (PfDDI1) is associated with chromatin and DNA-protein crosslinks. PfDDI1-depleted parasites accumulated DNA-protein crosslinks and showed enhanced susceptibility to DNA-damaging chemicals, indicating a role of PfDDI1 in removal of DNA-protein crosslinks. Knock-down of PfDDI1 increased susceptibility to the retroviral protease inhibitor lopinavir and antimalarial artemisinin, which suggests that simultaneous inhibition of DDI1 could potentiate antimalarial activity of these drugs. As DDI1 knock-down parasites confer protective immunity and it could be a target of HIV protease inhibitors, Plasmodium DDI1 is a potential therapeutic target for malaria control.


Asunto(s)
Antimaláricos , Inhibidores de la Proteasa del VIH , Plasmodium , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Ratones , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Daño del ADN , Plasmodium/genética , ADN , Cromatina , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética
5.
Microbiol Spectr ; 10(3): e0278121, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35616371

RESUMEN

Despite a remarkable improvement in health care and continued drug discovery efforts, malaria control efforts are continuously challenged by the emergence of drug-resistant parasite strains. Given a long and risky development path of new drugs, repurposing existing drugs for the treatment of malaria is an attractive and shorter path. Tamoxifen, a selective estrogen receptor modulator (SERM) for the treatment and prevention of estrogen receptor-positive breast cancer, possesses antibacterial, antifungal, and antiparasitic activities. Hence, we assessed tamoxifen, raloxifene, and bazedoxifene, which represent the first-, second-, and third-generation SERMs, respectively, for antimalarial activity. Raloxifene and bazedoxifene inhibited the erythrocytic development of Plasmodium falciparum with submicromolar 50% inhibitory concentration (IC50) values. Among the three, bazedoxifene was the most potent and also decreased P. berghei infection in female mice but not in male mice. However, bazedoxifene similarly inhibited P. falciparum growth in erythrocytes of male and female origin, which highlights the importance of sex-specific host physiology in drug efficacy. Bazedoxifene was most potent on early ring-stage parasites, and about 35% of the treated parasites did not contain hemozoin in the food vacuole. Bazedoxifene-treated parasites had almost 34% less hemozoin content than the control parasites. However, both control and bazedoxifene-treated parasites had similar hemoglobin levels, suggesting that bazedoxifene inhibits hemozoin formation and that toxicity due to accumulation of free heme could be a mechanism of its antimalarial activity. Because bazedoxifene is in clinical use and bazedoxifene-chloroquine combination shows an additive antiparasitic effect, bazedoxifene could be an adjunctive partner of currently used antimalarial regimens. IMPORTANCE The emergence and spread of drug-resistant strains of the human malaria parasite Plasmodium falciparum has necessitated new drugs. Selective estrogen receptor modulators are in clinical use for the prevention and treatment of breast cancer and postmenopausal osteoporosis. We demonstrate that bazedoxifene, a third-generation selective estrogen receptor modulator, has potent inhibitory activity against both susceptible and drug-resistant strains of Plasmodium falciparum. It also blocked the development of Plasmodium berghei in mice. The inhibitory effect was strongest on the ring stage and resulted in the inhibition of hemozoin formation, which could be the major mechanism of bazedoxifene action. Hemozoin is a nontoxic polymer of heme, which is a by-product of hemoglobin degradation by the malaria parasite during its development within the erythrocyte. Because bazedoxifene is already in clinical use for the treatment of postmenopausal osteoporosis, our findings support repurposing of bazedoxifene as an antimalarial.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Neoplasias , Osteoporosis Posmenopáusica , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Femenino , Hemo/metabolismo , Hemo/farmacología , Hemo/uso terapéutico , Hemoproteínas , Hemoglobinas , Humanos , Indoles , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Masculino , Ratones , Osteoporosis Posmenopáusica/tratamiento farmacológico , Plasmodium falciparum , Posmenopausia , Clorhidrato de Raloxifeno/farmacología , Clorhidrato de Raloxifeno/uso terapéutico , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
6.
Indian J Med Res ; 156(4&5): 659-668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36926783

RESUMEN

Background & objectives: COVID-19 has been a global pandemic since early 2020. It has diverse clinical manifestations, but consistent immunological and metabolic correlates of disease severity and protection are not clear. This study was undertaken to compare seropositivity rate, antibody levels against nucleocapsid and spike proteins, virus neutralization and metabolites between adult and child COVID-19 patients. Methods: Plasma samples from naïve control (n=14) and reverse transcription (RT)-PCR positive COVID-19 participants (n=132) were tested for reactivity with nucleocapsid and spike proteins by ELISA, neutralization of SARS-CoV-2 infectivity in Vero cells and metabolites by [1]H nuclear magnetic resonance (NMR) spectroscopy. Results: An ELISA platform was developed using nucleocapsid and spike proteins for COVID-19 serosurvey. The participants showed greater seropositivity for nucleocapsid (72%) than spike (55.3%), and males showed higher seropositivity than females for both the proteins. Antibody levels to both the proteins were higher in intensive care unit (ICU) than ward patients. Children showed lower seropositivity and antibody levels than adults. In contrast to ICU adults (81.3%), ICU children (33.3%) showed lower seropositivity for spike. Notably, the neutralization efficiency correlated with levels of anti-nucleocapsid antibodies. The levels of plasma metabolites were perturbed differentially in COVID-19 patients as compared with the naive controls. Interpretation & conclusions: Our results reflect the complexity of human immune response and metabolome to SARS-CoV-2 infection. While innate and cellular immune responses are likely to be a major determinant of disease severity and protection, antibodies to multiple viral proteins likely affect COVID-19 pathogenesis. In children, not adults, lower seropositivity rate for spike was associated with disease severity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Masculino , Femenino , Animales , Chlorocebus aethiops , Humanos , Niño , Células Vero , Glicoproteína de la Espiga del Coronavirus , Formación de Anticuerpos , Anticuerpos Antivirales
7.
Sci Rep ; 10(1): 20220, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214620

RESUMEN

A variety of post-translational modifications of Plasmodium falciparum proteins, including phosphorylation and ubiquitination, are shown to have key regulatory roles during parasite development. NEDD8 is a ubiquitin-like modifier of cullin-RING E3 ubiquitin ligases, which regulates diverse cellular processes. Although neddylation is conserved in eukaryotes, it is yet to be characterized in Plasmodium and related apicomplexan parasites. We characterized P. falciparum NEDD8 (PfNEDD8) and identified cullins as its physiological substrates. PfNEDD8 is a 76 amino acid residue protein without the C-terminal tail, indicating that it can be readily conjugated. The wild type and mutant (Gly75Ala/Gly76Ala) PfNEDD8 were expressed in P. falciparum. Western blot of wild type PfNEDD8-expressing parasites indicated multiple high molecular weight conjugates, which were absent in the parasites expressing the mutant, indicating conjugation of NEDD8 through Gly76. Immunoprecipitation followed by mass spectrometry of wild type PfNEDD8-expressing parasites identified two putative cullins. Furthermore, we expressed PfNEDD8 in mutant S. cerevisiae strains that lacked endogenous NEDD8 (rub1Δ) or NEDD8 conjugating E2 enzyme (ubc12Δ). The PfNEDD8 immunoprecipitate also contained S. cerevisiae cullin cdc53, further substantiating cullins as physiological substrates of PfNEDD8. Our findings lay ground for investigation of specific roles and drug target potential of neddylation in malaria parasites.


Asunto(s)
Proteínas Cullin/metabolismo , Proteína NEDD8/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Cullin/genética , Bases de Datos Genéticas , Proteína NEDD8/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
8.
Sci Rep ; 9(1): 19952, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882761

RESUMEN

Simple and efficient transfection methods for genetic manipulation of Plasmodium falciparum are desirable to identify, characterize and validate the genes with therapeutic potential and better understand parasite biology. Among the available transfection techniques for P. falciparum, electroporation-based methods, particularly electroporation of ring-infected RBCs is routinely used. Nonetheless, transfection of P. falciparum remains a resource-intensive procedure. Here, we report a simple and economic transfection method for P. falciparum, which is termed as the lyse-reseal erythrocytes for transfection (LyRET). It involved lysis of erythrocytes with a hypotonic RBC lysis buffer containing the desired plasmid DNA, followed by resealing by adding a high salt buffer. These DNA-encapsulated lyse-reseal erythrocytes were mixed with P. falciparum trophozoite/schizont stages and subjected to selection for the plasmid-encoded drug resistance. In parallel, transfections were also done by the methods utilizing electroporation of DNA into uninfected RBCs and parasite-infected RBCs. The LyRET method successfully transfected 3D7 and D10 strains with different plasmids in 63 of the 65 attempts, with success rate similar to transfection by electroporation of DNA into infected RBCs. The cost effectiveness and comparable efficiency of LyRET method makes it an alternative to the existing transfection methods for P. falciparum, particularly in resource-limited settings.


Asunto(s)
Eritrocitos/metabolismo , Plasmodium falciparum/genética , Transfección/métodos , ADN/genética , Electroporación/economía , Electroporación/métodos , Eritrocitos/parasitología , Técnicas de Transferencia de Gen , Humanos , Malaria Falciparum/parasitología , Plásmidos/genética , Transfección/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA