Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36675965

RESUMEN

The Turkey oak (Quercus cerris L.) is widely distributed in Italy, where it is the ecologically dominant oak on sandy and acidic soil. In this work, we analysed 23 natural populations by means of eight SSR (microsatellite) markers, to obtain the first synthetic map of genetic variability for this species and to study its dispersion during the Holocene, due to the possibility that at least one refugium during the Last Glacial Maximum was in Italy. The analyses showed a good amount of genetic variability together with fair differentiation between populations, as indicated by FST = 0.059. A Bayesian analysis of the amount of admixture among populations revealed the presence of four putative gene pools of origin and a rough subdivision of the populations according to their geographic location, as confirmed by the spatial analysis. No evidence for the existence of putative refugial populations was found; however, this study paves the way for the planning of conservation strategies also with regard to the relationship between Turkey oak and other oak species in Italy.

2.
Front Neural Circuits ; 14: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372918

RESUMEN

A general agreement in psycholinguistics claims that syntax and meaning are unified precisely and very quickly during online sentence processing. Although several theories have advanced arguments regarding the neurocomputational bases of this phenomenon, we argue that these theories could potentially benefit by including neurophysiological data concerning cortical dynamics constraints in brain tissue. In addition, some theories promote the integration of complex optimization methods in neural tissue. In this paper we attempt to fill these gaps introducing a computational model inspired in the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites produce stochastic cellular activations, while distal dendritic branches-on the other hand-contribute independently to somatic depolarization by means of dendritic spikes, and finally, prediction failures produce massive firing events preventing formation of sparse distributed representations. The model presented in this paper combines semantic and coarse-grained syntactic constraints for each word in a sentence context until grammatically related word function discrimination emerges spontaneously by the sole correlation of lexical information from different sources without applying complex optimization methods. By means of support vector machine techniques, we show that the sparse activation features returned by our approach are well suited-bootstrapping from the features returned by Word Embedding mechanisms-to accomplish grammatical function classification of individual words in a sentence. In this way we develop a biologically guided computational explanation for linguistically relevant unification processes in cortex which connects psycholinguistics to neurobiological accounts of language. We also claim that the computational hypotheses established in this research could foster future work on biologically-inspired learning algorithms for natural language processing applications.


Asunto(s)
Vías Aferentes/fisiología , Simulación por Computador , Lingüística/métodos , Neocórtex/fisiología , Red Nerviosa/fisiología , Percepción del Habla/fisiología , Dendritas/fisiología , Humanos
3.
PLoS One ; 14(6): e0217966, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31173613

RESUMEN

Many computational theories have been developed to improve artificial phonetic classification performance from linguistic auditory streams. However, less attention has been given to psycholinguistic data and neurophysiological features recently found in cortical tissue. We focus on a context in which basic linguistic units-such as phonemes-are extracted and robustly classified by humans and other animals from complex acoustic streams in speech data. We are especially motivated by the fact that 8-month-old human infants can accomplish segmentation of words from fluent audio streams based exclusively on the statistical relationships between neighboring speech sounds without any kind of supervision. In this paper, we introduce a biologically inspired and fully unsupervised neurocomputational approach that incorporates key neurophysiological and anatomical cortical properties, including columnar organization, spontaneous micro-columnar formation, adaptation to contextual activations and Sparse Distributed Representations (SDRs) produced by means of partial N-Methyl-D-aspartic acid (NMDA) depolarization. Its feature abstraction capabilities show promising phonetic invariance and generalization attributes. Our model improves the performance of a Support Vector Machine (SVM) classifier for monosyllabic, disyllabic and trisyllabic word classification tasks in the presence of environmental disturbances such as white noise, reverberation, and pitch and voice variations. Furthermore, our approach emphasizes potential self-organizing cortical principles achieving improvement without any kind of optimization guidance which could minimize hypothetical loss functions by means of-for example-backpropagation. Thus, our computational model outperforms multiresolution spectro-temporal auditory feature representations using only the statistical sequential structure immerse in the phonotactic rules of the input stream.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Percepción del Habla/fisiología , Habla/fisiología , Estimulación Acústica/métodos , Acústica , Animales , Atención/fisiología , Percepción Auditiva/fisiología , Simulación por Computador , Humanos , Lactante , Lenguaje , Fonética
4.
Neurol Res ; 36(12): 1035-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24984771

RESUMEN

OBJECTIVE: To determine if a computer-based simulation with haptic technology can help surgical trainees improve tactile discrimination using surgical instruments. MATERIAL AND METHODS: Twenty junior medical students participated in the study and were randomized into two groups. Subjects in Group A participated in virtual simulation training using the ImmersiveTouch simulator (ImmersiveTouch, Inc., Chicago, IL, USA) that required differentiating the firmness of virtual spheres using tactile and kinesthetic sensation via haptic technology. Subjects in Group B did not undergo any training. With their visual fields obscured, subjects in both groups were then evaluated on their ability to use the suction and bipolar instruments to find six elastothane objects with areas ranging from 1.5 to 3.5 cm2 embedded in a urethane foam brain cavity model while relying on tactile and kinesthetic sensation only. RESULTS: A total of 73.3% of the subjects in Group A (simulation training) were able to find the brain cavity objects in comparison to 53.3% of the subjects in Group B (no training) (P  =  0.0183). There was a statistically significant difference in the total number of Group A subjects able to find smaller brain cavity objects (size ≤ 2.5 cm2) compared to that in Group B (72.5 vs. 40%, P  =  0.0032). On the other hand, no significant difference in the number of subjects able to detect larger objects (size ≧ 3 cm2) was found between Groups A and B (75 vs. 80%, P  =  0.7747). CONCLUSION: Virtual computer-based simulators with integrated haptic technology may improve tactile discrimination required for microsurgical technique.


Asunto(s)
Simulación por Computador , Neurocirugia/educación , Humanos , Tacto , Interfaz Usuario-Computador
5.
Neurol Res ; 36(11): 968-73, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24846707

RESUMEN

OBJECTIVE: This study explores the usefulness of virtual simulation training for learning to place pedicle screws in the lumbar spine. METHODS: Twenty-six senior medical students anonymously participated and were randomized into two groups (A = no simulation; B = simulation). Both groups were given 15 minutes to place two pedicle screws in a sawbones model. Students in Group A underwent traditional visual/verbal instruction whereas students in Group B underwent training on pedicle screw placement in the ImmersiveTouch simulator. The students in both groups then placed two pedicle screws each in a lumbar sawbones models that underwent triplanar thin slice computerized tomography and subsequent analysis based on coronal entry point, axial and sagittal deviations, length error, and pedicle breach. The average number of errors per screw was calculated for each group. Semi-parametric regression analysis for clustered data was used with generalized estimating equations accommodating a negative binomial distribution to determine any statistical difference of significance. RESULTS: A total of 52 pedicle screws were analyzed. The reduction in the average number of errors per screw after a single session of simulation training was 53.7% (P  =  0.0067). The average number of errors per screw in the simulation group was 0.96 versus 2.08 in the non-simulation group. The simulation group outperformed the non-simulation group in all variables measured. The three most benefited measured variables were length error (86.7%), coronal error (71.4%), and pedicle breach (66.7%). CONCLUSIONS: Computer-based simulation appears to be a valuable teaching tool for non-experts in a highly technical procedural task such as pedicle screw placement that involves sequential learning, depth perception, and understanding triplanar anatomy.


Asunto(s)
Simulación por Computador , Neurocirugia/educación , Médula Espinal/cirugía , Interfaz Usuario-Computador , Humanos , Análisis y Desempeño de Tareas
6.
World Neurosurg ; 80(6): 732-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24076054

RESUMEN

OBJECTIVE: To understand the perceived utility of a novel simulator to improve operative skill, eye-hand coordination, and depth perception. METHODS: We used the ImmersiveTouch simulation platform (ImmersiveTouch, Inc., Chicago, Illinois, USA) in two U.S. Accreditation Council for Graduate Medical Education-accredited neurosurgical training programs: the University of Chicago and the University of Texas Medical Branch. A total of 54 trainees participated in the study, which consisted of 14 residents (group A), 20 senior medical students who were neurosurgery candidates (group B), and 20 junior medical students (group C). The participants performed a simulation task that established bipolar hemostasis in a virtual brain cavity and provided qualitative feedback regarding perceived benefits in eye-hand coordination, depth perception, and potential to assist in improving operating skills. RESULTS: The perceived ability of the simulator to positively influence skills judged by the three groups: group A, residents; group B, senior medical students; and group C, junior medical students was, respectively, 86%, 100%, and 100% for eye-hand coordination; 86%, 100%, and 95% for depth perception; and 79%, 100%, and 100% for surgical skills in the operating room. From all groups, 96.2% found the simulation somewhat or very useful to improve eye-hand coordination, and 94% considered it beneficial to improve depth perception and operating room skills. CONCLUSION: This simulation module may be suitable for resident training, as well as for the development of career interest and skill acquisition; however, validation for this type of simulation needs to be further developed.


Asunto(s)
Encéfalo/fisiología , Encéfalo/cirugía , Competencia Clínica , Técnicas Hemostáticas/instrumentación , Destreza Motora/fisiología , Neurocirugia/educación , Desempeño Psicomotor/fisiología , Interfaz Usuario-Computador , Simulación por Computador , Electrocoagulación , Humanos , Procedimientos Neuroquirúrgicos/instrumentación , Procedimientos Neuroquirúrgicos/métodos
7.
Neurosurgery ; 73 Suppl 1: 116-21, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24051874

RESUMEN

BACKGROUND: Manual skill is important for surgeons, but current methods to evaluate sensory-motor skills in applicants to a surgical residency are limited. OBJECTIVE: To develop a method of testing sensory-motor skill using objective and reproducible virtual reality simulation. METHODS: We designed a set of tests on a 3-dimensional surgical simulator with head and arm tracking, colocalization, and haptic feedback: (1) "trajectory planning in a simulated vertebra," ie, 3-dimensional memory and orientation; "hemostasis in the brain," ie, motor planning, sequence, timing, and precision; and "choose the softest object," ie, haptic perception. We also derived a weighted combined score for all tasks. RESULTS: Of the 55 consecutive applicants to a neurosurgery residency approached, 46 performed at least 1 task, and 36 performed all tasks. For the trajectory planning task, the distance from target ranged from 3 to 30 mm, with 25 of 36 in the 6- to 18-mm range. In the motor planning test, the duration between cauterization attempts ranged between 5 and 22.5 seconds, peaking at 10 to 12.5 seconds in 15 of 36 participants. In the haptic perception test, linear regression demonstrated increased variability in performance with increasing difficulty of task (R = 0.6281). In all tests, performance followed a roughly bell-shaped curve. The combined weighted score of all tests demonstrated a better bell curve distribution, with scores ranging from 0.275 to 0.71 (mean, 0.47; median, 0.4775; SD, 0.1174). CONCLUSION: Our study represents a first step in the direction of an objective, standard, computer-scored test of motor and haptic ability.


Asunto(s)
Destreza Motora/fisiología , Neurocirugia/métodos , Criterios de Admisión Escolar , Adulto , Pruebas de Aptitud , Tornillos Óseos , Encéfalo/cirugía , Competencia Clínica , Gráficos por Computador , Simulación por Computador , Interpretación Estadística de Datos , Femenino , Hemostasis , Humanos , Internado y Residencia/organización & administración , Masculino , Proyectos Piloto , Desempeño Psicomotor , Columna Vertebral/anatomía & histología , Interfaz Usuario-Computador , Percepción Visual/fisiología
8.
Simul Healthc ; 8(1): 25-31, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23117306

RESUMEN

INTRODUCTION: Ventriculostomy is a neurosurgical procedure for providing therapeutic cerebrospinal fluid drainage. Complications may arise during repeated attempts at placing the catheter in the ventricle. We studied the impact of simulation-based practice with a library of virtual brains on neurosurgery residents' performance in simulated and live surgical ventriculostomies. METHODS: Using computed tomographic scans of actual patients, we developed a library of 15 virtual brains for the ImmersiveTouch system, a head- and hand-tracked augmented reality and haptic simulator. The virtual brains represent a range of anatomies including normal, shifted, and compressed ventricles. Neurosurgery residents participated in individual simulator practice on the library of brains including visualizing the 3-dimensional location of the catheter within the brain immediately after each insertion. Performance of participants on novel brains in the simulator and during actual surgery before and after intervention was analyzed using generalized linear mixed models. RESULTS: Simulator cannulation success rates increased after intervention, and live procedure outcomes showed improvement in the rate of successful cannulation on the first pass. However, the incidence of deeper, contralateral (simulator) and third-ventricle (live) placements increased after intervention. Residents reported that simulations were realistic and helpful in improving procedural skills such as aiming the probe, sensing the pressure change when entering the ventricle, and estimating how far the catheter should be advanced within the ventricle. CONCLUSIONS: Simulator practice with a library of virtual brains representing a range of anatomies and difficulty levels may improve performance, potentially decreasing complications due to inexpert technique.


Asunto(s)
Encéfalo/anatomía & histología , Simulación por Computador , Percepción del Tacto , Interfaz Usuario-Computador , Ventriculostomía/educación , Chicago , Humanos , Cuerpo Médico de Hospitales/educación , Neurocirugia/educación , Encuestas y Cuestionarios
9.
Neurosurgery ; 72 Suppl 1: 115-23, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23254799

RESUMEN

Recent studies have shown that mental script-based rehearsal and simulation-based training improve the transfer of surgical skills in various medical disciplines. Despite significant advances in technology and intraoperative techniques over the last several decades, surgical skills training on neurosurgical operations still carries significant risk of serious morbidity or mortality. Potentially avoidable technical errors are well recognized as contributing to poor surgical outcome. Surgical education is undergoing overwhelming change, as a result of the reduction of work hours and current trends focusing on patient safety and linking reimbursement with clinical outcomes. Thus, there is a need for adjunctive means for neurosurgical training, which is a recent advancement in simulation technology. ImmersiveTouch is an augmented reality system that integrates a haptic device and a high-resolution stereoscopic display. This simulation platform uses multiple sensory modalities, re-creating many of the environmental cues experienced during an actual procedure. Modules available include ventriculostomy, bone drilling, percutaneous trigeminal rhizotomy, and simulated spinal modules such as pedicle screw placement, vertebroplasty, and lumbar puncture. We present our experience with the development of such augmented reality neurosurgical modules and the feedback from neurosurgical residents.


Asunto(s)
Enfermedades del Sistema Nervioso Central/cirugía , Simulación por Computador , Educación de Postgrado en Medicina/métodos , Internado y Residencia/métodos , Procedimientos Neuroquirúrgicos/educación , Educación Basada en Competencias/métodos , Craneotomía/educación , Craneotomía/métodos , Retroalimentación , Humanos , Imagenología Tridimensional/métodos , Errores Médicos/prevención & control , Rizotomía/educación , Rizotomía/métodos , Fusión Vertebral/educación , Fusión Vertebral/métodos , Punción Espinal/métodos , Tacto , Neuralgia del Trigémino/cirugía , Interfaz Usuario-Computador , Ventriculostomía/educación , Ventriculostomía/métodos , Vertebroplastia/educación , Vertebroplastia/métodos
10.
Neurosurgery ; 72 Suppl 1: 89-96, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23254818

RESUMEN

BACKGROUND: In this study, we evaluated the use of a part-task simulator with 3-dimensional and haptic feedback as a training tool for percutaneous spinal needle placement. OBJECTIVE: To evaluate the learning effectiveness in terms of entry point/target point accuracy of percutaneous spinal needle placement on a high-performance augmented-reality and haptic technology workstation with the ability to control the duration of computer-simulated fluoroscopic exposure, thereby simulating an actual situation. METHODS: Sixty-three fellows and residents performed needle placement on the simulator. A virtual needle was percutaneously inserted into a virtual patient's thoracic spine derived from an actual patient computed tomography data set. RESULTS: Ten of 126 needle placement attempts by 63 participants ended in failure for a failure rate of 7.93%. From all 126 needle insertions, the average error (15.69 vs 13.91), average fluoroscopy exposure (4.6 vs 3.92), and average individual performance score (32.39 vs 30.71) improved from the first to the second attempt. Performance accuracy yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the first to second attempt in the test session. CONCLUSION: The experiments showed evidence (P = .04) of performance accuracy improvement from the first to the second percutaneous needle placement attempt. This result, combined with previous learning retention and/or face validity results of using the simulator for open thoracic pedicle screw placement and ventriculostomy catheter placement, supports the efficacy of augmented reality and haptics simulation as a learning tool.


Asunto(s)
Educación Basada en Competencias/métodos , Imagenología Tridimensional , Procedimientos Quirúrgicos Mínimamente Invasivos/educación , Agujas , Ventriculostomía/educación , Vertebroplastia/educación , Derivaciones del Líquido Cefalorraquídeo/educación , Derivaciones del Líquido Cefalorraquídeo/métodos , Derivaciones del Líquido Cefalorraquídeo/normas , Competencia Clínica , Simulación por Computador , Becas/métodos , Femenino , Fluoroscopía , Humanos , Internado y Residencia/métodos , Masculino , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/normas , Dosis de Radiación , Columna Vertebral/cirugía , Tomografía Computarizada por Rayos X , Interfaz Usuario-Computador , Ventriculostomía/métodos , Ventriculostomía/normas , Vertebroplastia/métodos , Vertebroplastia/normas
11.
J Comput Inf Sci Eng ; 12(2): 21004-NaN, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24891842

RESUMEN

Combinations of graphics and haptics libraries are used in medical simulations for simultaneous visualization and tactile interaction with complex 3D anatomy models. The minimum frame rate of 1 kHz for haptics rendering makes it a nontrivial problem when dealing with complex and highly detailed polygonal models. Multiple haptics algorithms based on polygonal mesh rendering, volume haptics, and intermediate representation are evaluated in terms of their servoloop rendering time, client thread rendering time, and quality of force feedback. Algorithms include OpenHaptics' Feedback Buffer and Depth Buffer, GodObject and Ruspini renderers in h3d, chai3d implementation in h3d, ScalarSurfaceFriction mode in Volume Haptics ToolKit (vhtk), and the authors' intermediate representation algorithm based on volumetric data. The latter, in combination with surface graphics visualization, is found to deliver the best rendering time, to detect all collisions and to provide correct haptic feedback where other algorithms fail.

12.
Surg Neurol Int ; 2: 52, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21697968

RESUMEN

BACKGROUND: Over years, surgical training is changing and years of tradition are being challenged by legal and ethical concerns for patient safety, work hour restrictions, and the cost of operating room time. Surgical simulation and skill training offer an opportunity to teach and practice advanced techniques before attempting them on patients. Simulation training can be as straightforward as using real instruments and video equipment to manipulate simulated "tissue" in a box trainer. More advanced virtual reality (VR) simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. METHODS: A PubMed review of the literature was performed for the MESH words "Virtual reality, "Augmented Reality", "Simulation", "Training", and "Neurosurgery". Relevant articles were retrieved and reviewed. A review of the literature was performed for the history, current status of VR simulation in neurosurgery. RESULTS: Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and credential surgeons as technically competent. The number of published literature discussing the application of VR simulation in neurosurgery training has evolved over the last decade from data visualization, including stereoscopic evaluation to more complex augmented reality models. With the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheters insertion, endoscopic and endovascular simulations are used in neurosurgical residency training centers across the world. Recent studies have shown the coloration of proficiency with those simulators and levels of experience in the real world. CONCLUSION: Fully immersive technology is starting to be applied to the practice of neurosurgery. In the near future, detailed VR neurosurgical modules will evolve to be an essential part of the curriculum of the training of neurosurgeons.

13.
Anesthesiol Clin ; 25(2): 337-48, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17574194

RESUMEN

The current virtual reality and haptic technologies being researched for potential use in high-fidelity simulations in anesthesiology are attempting to overcome a number of limitations, such as low resolution, low visual acuity, and lack of robust haptics-graphics collocation. A new prototype device invented by the authors, known as ImmersiveTouch, addresses how to overcome these technologic limitations.


Asunto(s)
Anestesiología/normas , Gráficos por Computador , Simulación por Computador , Humanos , Maniquíes , Tacto
14.
Stud Health Technol Inform ; 125: 37-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17377229

RESUMEN

This paper presents the application of virtual reality and haptics to the simulation of cellular micromanipulation for research, training and automation purposes. A collocated graphic/haptic working volume provides a realistic visual and force feedback to guide the user in performing a cell injection procedure. A preliminary experiment shows promising results.


Asunto(s)
Simulación por Computador , Células Epiteliales , Microinyecciones , Interfaz Usuario-Computador , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...