RESUMEN
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
RESUMEN
Fluorescence microscopy has long been a transformative technique in biological sciences. Nevertheless, most implementations are limited to a few targets, which have been revealed using primary antibodies and fluorescently conjugated secondary antibodies. Super-resolution techniques such as Exchange-PAINT and, more recently, SUM-PAINT have increased multiplexing capabilities, but they require specialized equipment, software, and knowledge. To enable multiplexing for any imaging technique in any laboratory, we developed NanoPlex, a streamlined method based on conventional antibodies revealed by engineered secondary nanobodies that allow the selective removal of fluorescence signals. We develop three complementary signal removal strategies: OptoPlex (light-induced), EnzyPlex (enzymatic), and ChemiPlex (chemical). We showcase NanoPlex reaching 21 targets for 3D confocal analyses and 5-8 targets for dSTORM and STED super-resolution imaging. NanoPlex has the potential to revolutionize multi-target fluorescent imaging methods, potentially redefining the multiplexing capabilities of antibody-based assays.
Asunto(s)
Microscopía Fluorescente , Anticuerpos de Dominio Único , Microscopía Fluorescente/métodos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Humanos , Microscopía Confocal/métodos , Animales , Colorantes Fluorescentes/químicaRESUMEN
The attainable resolution of fluorescence microscopy has reached the subnanometer range, but this technique still fails to image the morphology of single proteins or small molecular complexes. Here, we expand the specimens at least tenfold, label them with conventional fluorophores and image them with conventional light microscopes, acquiring videos in which we analyze fluorescence fluctuations. One-step nanoscale expansion (ONE) microscopy enables the visualization of the shapes of individual membrane and soluble proteins, achieving around 1-nm resolution. We show that conformational changes are readily observable, such as those undergone by the ~17-kDa protein calmodulin upon Ca2+ binding. ONE is also applied to clinical samples, analyzing the morphology of protein aggregates in cerebrospinal fluid from persons with Parkinson disease, potentially aiding disease diagnosis. This technology bridges the gap between high-resolution structural biology techniques and light microscopy, providing new avenues for discoveries in biology and medicine.
RESUMEN
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse. This review focuses on the current status of this topic, summarizing general findings on the membrane trafficking of the most prominent synaptic adhesion molecules. Remarkably, evidence for endocytosis processes has been obtained for many synaptic adhesion proteins, including dystroglycans, latrophilins, calsyntenins, netrins, teneurins, neurexins, neuroligins and neuronal pentraxins. Less evidence has been obtained on their recycling, possibly because of the lack of specific assays. We conclude that the trafficking of the synaptic adhesion molecules is an important topic, which should receive more attention in the future.
RESUMEN
Synaptic proteins need to be replaced regularly, to maintain function and to prevent damage. It is unclear whether this process, known as protein turnover, relates to synaptic morphology. To test this, we relied on nanoscale secondary ion mass spectrometry, to detect newly synthesized synaptic components in the brains of young adult (6 mo old) and aged mice (24 mo old), and on transmission electron microscopy, to reveal synapse morphology. Several parameters correlated to turnover, including pre- and postsynaptic size, the number of synaptic vesicles and the presence of a postsynaptic nascent zone. In aged mice, the turnover of all brain compartments was reduced by â¼20%. The turnover rates of the pre- and postsynapses correlated well in aged mice, suggesting that they are subject to common regulatory mechanisms. This correlation was poorer in young adult mice, in line with their higher synaptic dynamics. We conclude that synapse turnover is reflected by synaptic morphology.
Asunto(s)
Encéfalo , Sinapsis , Vesículas Sinápticas , Animales , Ratones , Sinapsis/metabolismo , Encéfalo/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Masculino , Envejecimiento/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Microscopía Electrónica de Transmisión , Ratones Endogámicos C57BLRESUMEN
Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.
Asunto(s)
Oocitos , Ovario , Proteoma , Proteostasis , Femenino , Animales , Oocitos/metabolismo , Ovario/metabolismo , Proteoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Envejecimiento/metabolismo , Envejecimiento/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Senescencia Celular , Fertilidad , Proteómica/métodos , Longevidad/fisiologíaRESUMEN
Protein turnover is a critical process for accurate cellular function, in which damaged proteins in the cells are gradually replaced with newly synthesized ones. Many previous studies on cellular protein turnover have used stable isotopic labelling by amino acids in cell culture (SILAC), followed by proteomic bulk analysis. However, this approach does not take into account the heterogeneity observed at the single-cell and subcellular levels. To address this, we investigated the protein turnover of neural progenitor cells at the subcellular resolution, using correlative TEM and NanoSIMS imaging, relying on a pulse-chase analysis of isotopically-labelled protein precusors. Cellular protein turnover was found significantly heterogenous across individual organelles, which indicates a possible relation between protein turnover and subcellular activity. In addition, different isotopically-labelled amino acids provided different turnover patterns, in spite of all being protein precursors, suggesting that they undergo distinct protein synthesis and metabolic pathways at the subcellular level.
RESUMEN
Carbon allocation of trees to ectomycorrhizas is thought to shape forest nutrient cycling, but the sink activities of different fungal taxa for host resources are unknown. Here, we investigate fungal taxon-specific differences in naturally composed ectomycorrhizal (EM) communities for plant-derived carbon and nitrogen. After aboveground dual labeling of young beech with 15N and 13C, ectomycorrhizas formed with different fungal taxa exhibit strong differences in label enrichment. Secondary Ion Mass Spectrometry (SIMS) imaging of nitrogen in cross sections of ectomycorrhizas demonstrates plant-derived 15N in both root and fungal structures. Isotope enrichment in ectomycorrhizas correlates with that in the corresponding ectomycorrhiza-attached lateral root, supporting fungal taxon-specific N and C fluxes in ectomycorrhizas. The enrichments with 13C and 15N in the symbiosis decrease with increasing C/N ratio of ectomycorrhizas, converging to zero at high C/N. The relative abundances of EM fungal species on roots are positively correlated with 13C enrichment, demonstrating higher fitness of stronger than of less C-demanding symbioses. Overall, our results support that differences among the C/N ratios in ectomycorrhizas formed with different fungal species regulate the supply of the symbioses with host-derived carbon and provide insights on functional traits of ectomycorrhizas, which are important for major ecosystem processes.
Asunto(s)
Micorrizas , Micorrizas/fisiología , Simbiosis , Nitrógeno , Carbono , Ecosistema , PlantasRESUMEN
Multiplexed cellular imaging typically relies on the sequential application of detection probes, as antibodies or DNA barcodes, which is complex and time-consuming. To address this, we developed here protein nanobarcodes, composed of combinations of epitopes recognized by specific sets of nanobodies. The nanobarcodes are read in a single imaging step, relying on nanobodies conjugated to distinct fluorophores, which enables a precise analysis of large numbers of protein combinations. Fluorescence images from nanobarcodes were used as input images for a deep neural network, which was able to identify proteins with high precision. We thus present an efficient and straightforward protein identification method, which is applicable to relatively complex biological assays. We demonstrate this by a multicell competition assay, in which we successfully used our nanobarcoded proteins together with neurexin and neuroligin isoforms, thereby testing the preferred binding combinations of multiple isoforms, in parallel.
Asunto(s)
Anticuerpos de Dominio Único , ADN , Anticuerpos , Imagen Óptica , Isoformas de ProteínasRESUMEN
Microcephaly is often caused by an impairment of the generation of neurons in the brain, a process referred to as neurogenesis. While most neurogenesis in mammals occurs during brain development, it thought to continue to take place through adulthood in selected regions of the mammalian brain, notably the hippocampus. However, the generality of neurogenesis in the adult brain has been controversial. While studies in mice and rats have provided compelling evidence for neurogenesis occurring in the adult rodent hippocampus, the lack of applicability in humans of key methods to demonstrate neurogenesis has led to an intense debate about the existence and, in particular, the magnitude of neurogenesis in the adult human brain. Here, we demonstrate the applicability of a powerful method to address this debate, that is, the in vivo labeling of adult human patients with 15N-thymidine, a non-hazardous form of thymidine, an approach without any clinical harm or ethical concerns. 15N-thymidine incorporation into newly synthesized DNA of specific cells was quantified at the single-cell level with subcellular resolution by Multiple-isotype imaging mass spectrometry (MIMS) of brain tissue resected for medical reasons. Two adult human patients, a glioblastoma patient and a patient with drug-refractory right temporal lobe epilepsy, were infused for 24 h with 15N-thymidine. Detection of 15N-positive leukocyte nuclei in blood samples from these patients confirmed previous findings by others and demonstrated the appropriateness of this approach to search for the generation of new cells in the adult human brain. 15N-positive neural cells were easily identified in the glioblastoma tissue sample, and the range of the 15N signal suggested that cells that underwent S-phase fully or partially during the 24 h in vivo labeling period, as well as cells generated therefrom, were detected. In contrast, within the hippocampus tissue resected from the epilepsy patient, none of the 2,000 dentate gyrus neurons analyzed was positive for 15N-thymidine uptake, consistent with the notion that the rate of neurogenesis in the adult human hippocampus is rather low. Of note, the likelihood of detecting neurogenesis was reduced because of (i) the low number of cells analyzed, (ii) the fact that hippocampal tissue was explored that may have had reduced neurogenesis due to epilepsy, and (iii) the labeling period of 24 h which may have been too short to capture quiescent neural stem cells. Yet, overall, our approach to enrich NeuN-labeled neuronal nuclei by FACS prior to MIMS analysis provides a promising strategy to quantify even low rates of neurogenesis in the adult human hippocampus after in vivo15N-thymidine infusion. From a general point of view and regarding future perspectives, the in vivo labeling of humans with 15N-thymidine followed by MIMS analysis of brain tissue constitutes a novel approach to study mitotically active cells and their progeny in the brain, and thus allows a broad spectrum of studies of brain physiology and pathology, including microcephaly.
RESUMEN
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
Asunto(s)
Sinapsinas , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales Modificados GenéticamenteRESUMEN
In mammals, spatial orientation is synaptically-encoded by sensory hair cells of the vestibular labyrinth. Vestibular hair cells (VHCs) harbor synaptic ribbons at their presynaptic active zones (AZs), which play a critical role in molecular scaffolding and facilitate synaptic release and vesicular replenishment. With advancing age, the prevalence of vestibular deficits increases; yet, the underlying mechanisms are not well understood and the possible accompanying morphological changes in the VHC synapses have not yet been systematically examined. We investigated the effects of maturation and aging on the ultrastructure of the ribbon-type AZs in murine utricles using various electron microscopic techniques and combined them with confocal and super-resolution light microscopy as well as metabolic imaging up to 1 year of age. In older animals, we detected predominantly in type I VHCs the formation of floating ribbon clusters, mostly consisting of newly synthesized ribbon material. Our findings suggest that VHC ribbon-type AZs undergo dramatic structural alterations upon aging.
RESUMEN
Parkinson's disease (PD) affects a significant proportion of the population over the age of 60 years, and its prevalence is increasing. While symptomatic treatment is available for motor symptoms of PD, non-motor complications such as dementia result in diminished life quality for patients and are far more difficult to treat. In this study, we analyzed PD-associated alterations in the hippocampus of PD patients, since this brain region is strongly affected by PD dementia. We focused on synapses, analyzing the proteome of post-mortal hippocampal tissue from 16 PD cases and 14 control subjects by mass spectrometry. Whole tissue lysates and synaptosomal fractions were analyzed in parallel. Differential analysis combined with bioinformatic network analyses identified neuronal pentraxin 1 (NPTX1) to be significantly dysregulated in PD and interacting with proteins of the synaptic compartment. Modulation of NPTX1 protein levels in primary hippocampal neuron cultures validated its role in synapse morphology. Our analysis suggests that NPTX1 contributes to synaptic pathology in late-stage PD and represents a putative target for novel therapeutic strategies.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Proteómica/métodos , Hipocampo/metabolismo , Enfermedad de Alzheimer/patologíaRESUMEN
The pre- and post-synaptic compartments contain a variety of molecules that are known to recycle between the plasma membrane and intracellular organelles. The recycling steps have been amply described in functional terms, with, for example, synaptic vesicle recycling being essential for neurotransmitter release, and postsynaptic receptor recycling being a fundamental feature of synaptic plasticity. However, synaptic protein recycling may also serve a more prosaic role, simply ensuring the repeated use of specific components, thereby minimizing the energy expenditure on the synthesis of synaptic proteins. This type of process has been recently described for components of the extracellular matrix, which undergo long-loop recycling (LLR), to and from the cell body. Here we suggest that the energy-saving recycling of synaptic components may be more widespread than is generally acknowledged, potentially playing a role in both synaptic vesicle protein usage and postsynaptic receptor metabolism.
Asunto(s)
Neuronas , Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Membrana Celular/metabolismo , Plasticidad NeuronalRESUMEN
Expansion microscopy (ExM) improves imaging quality by physically enlarging the biological specimens. In principle, combining a large expansion factor with optical super-resolution should provide extremely high imaging precision. However, large expansion factors imply that the expanded specimens are dim and are therefore poorly suited for optical super-resolution. To solve this problem, we present a protocol that ensures the expansion of the samples up to 10-fold, in a single expansion step, through high-temperature homogenization (X10ht). The resulting gels exhibit a higher fluorescence intensity than gels homogenized using enzymatic digestion (based on proteinase K). This enables the sample analysis by multicolor stimulated emission depletion (STED) microscopy, for a final resolution of 6-8 nm in neuronal cell cultures or isolated vesicles. X10ht also enables the expansion of 100-200 µm thick brain samples, up to 6-fold. The better epitope preservation also enables the use of nanobodies as labeling probes and the implementation of post-expansion signal amplification. We conclude that X10ht is a promising tool for nanoscale resolution in biological samples.
Asunto(s)
Calor , Neuronas , Microscopía Fluorescente/métodos , Encéfalo , GelesRESUMEN
The function of the postsynaptic compartment is based on the presence and activity of postsynaptic receptors, whose dynamics are controlled by numerous scaffolding, signaling and trafficking proteins. Although the receptors and the scaffolding proteins have received substantial attention, the trafficking proteins have not been investigated extensively. Their mobility rates are unknown, and it is unclear how the postsynaptic environment affects their dynamics. To address this, we analyzed several trafficking proteins (α-synuclein, amphiphysin, calmodulin, doc2a, dynamin, and endophilin), estimating their movement rates in the dendritic shaft, as well as in morphologically distinct "mushroom" and "stubby" postsynapse types. The diffusion parameters were surprisingly similar across dendritic compartments, and a few differences between proteins became evident only in the presence of a synapse neck. We conclude that the movement of trafficking proteins is not strongly affected by the postsynaptic compartment, in stark contrast to the presynapse, which regulates strongly the movement of such proteins.
RESUMEN
BACKGROUND: Melanoma, the deadliest of skin cancers, has a high propensity to form brain metastases that are associated with a markedly worsened prognosis. In spite of recent therapeutic advances, melanoma brain lesions remain a clinical challenge, biomarkers predicting brain dissemination are not clear and differences with other metastatic sites are poorly understood. METHODS: We examined a genetically diverse panel of human-derived melanoma brain metastasis (MBM) and extracranial cell lines using targeted sequencing, a Reverse Phase Protein Array, protein expression analyses, and functional studies in vitro and in vivo. RESULTS: Brain-specific genetic alterations were not detected; however, MBM cells in vitro displayed lower proliferation rates and MBM-specific protein expression patterns associated with proliferation, DNA damage, adhesion, and migration. MBM lines displayed higher levels of RAC1 expression, involving a distinct RAC1-PAK1-JNK1 signaling network. RAC1 knockdown or treatment with small molecule inhibitors contributed to a less aggressive MBM phenotype in vitro, while RAC1 knockdown in vivo led to reduced tumor volumes and delayed tumor appearance. Proliferation, adhesion, and migration were higher in MBM vs nonMBM lines in the presence of insulin or brain-derived factors and were affected by RAC1 levels. CONCLUSIONS: Our findings indicate that despite their genetic variability, MBM engage specific molecular processes such as RAC1 signaling to adapt to the brain microenvironment and this can be used for the molecular characterization and treatment of brain metastases.
Asunto(s)
Neoplasias Encefálicas , Melanoma , Neoplasias Cutáneas , Humanos , Pronóstico , Melanoma/patología , Neoplasias Encefálicas/genética , Biomarcadores , Microambiente Tumoral , Proteína de Unión al GTP rac1/metabolismoRESUMEN
Regulation of firing rate homeostasis constitutes a fundamental property of central neural circuits. While intracellular Ca2+ has long been hypothesized to be a feedback control signal, the molecular machinery enabling a network-wide homeostatic response remains largely unknown. We show that deletion of insulin-like growth factor-1 receptor (IGF-1R) limits firing rate homeostasis in response to inactivity, without altering the distribution of baseline firing rates. The deficient firing rate homeostatic response was due to disruption of both postsynaptic and intrinsic plasticity. At the cellular level, we detected a fraction of IGF-1Rs in mitochondria, colocalized with the mitochondrial calcium uniporter complex (MCUc). IGF-1R deletion suppressed transcription of the MCUc members and burst-evoked mitochondrial Ca2+ (mitoCa2+) by weakening mitochondria-to-cytosol Ca2+ coupling. Overexpression of either mitochondria-targeted IGF-1R or MCUc in IGF-1R-deficient neurons was sufficient to rescue the deficits in burst-to-mitoCa2+ coupling and firing rate homeostasis. Our findings indicate that mitochondrial IGF-1R is a key regulator of the integrated homeostatic response by tuning the reliability of burst transfer by MCUc. Based on these results, we propose that MCUc acts as a homeostatic Ca2+ sensor. Faulty activation of MCUc may drive dysregulation of firing rate homeostasis in aging and in brain disorders associated with aberrant IGF-1R/MCUc signaling.