Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 13(1)2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201261

RESUMEN

Increased nuclear size correlates with lower survival rates and higher grades for prostate cancer. The short-chain dehydrogenase/reductase (SDR) family member DHRS7 was suggested as a biomarker for use in prostate cancer grading because it is largely lost in higher-grade tumors. Here, we found that reduction in DHRS7 from the LNCaP prostate cancer cell line with normally high levels of DHRS7 increases nuclear size, potentially explaining the nuclear size increase observed in higher-grade prostate tumors where it is lost. An exogenous expression of DHRS7 in the PC3 prostate cancer cell line with normally low DHRS7 levels correspondingly decreases nuclear size. We separately tested 80 compounds from the Microsource Spectrum library for their ability to restore normal smaller nuclear size to PC3 cells, finding that estradiol propionate had the same effect as the re-expression of DHRS7 in PC3 cells. However, the drug had no effect on LNCaP cells or PC3 cells re-expressing DHRS7. We speculate that separately reported beneficial effects of estrogens in androgen-independent prostate cancer may only occur with the loss of DHRS7/ increased nuclear size, and thus propose DHRS7 levels and nuclear size as potential biomarkers for the likely effectiveness of estrogen-based treatments.


Asunto(s)
Estradiol , Neoplasias de la Próstata , Masculino , Humanos , Estradiol/farmacología , Propionatos , Neoplasias de la Próstata/tratamiento farmacológico , Próstata , Estrógenos , Oxidorreductasas
2.
ACS Chem Biol ; 17(3): 680-700, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35199530

RESUMEN

Background: Lower survival rates for many cancer types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific manner. Hypothesizing that such changes might confer an advantage to tumor cells, we aimed at the identification of commercially available compounds to guide further mechanistic studies. We therefore screened for Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved compounds that reverse the direction of characteristic tumor nuclear size changes in PC3, HCT116, and H1299 cell lines reflecting, respectively, prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous lung cancer. Results: We found distinct, largely nonoverlapping sets of compounds that rectify nuclear size changes for each tumor cell line. Several classes of compounds including, e.g., serotonin uptake inhibitors, cyclo-oxygenase inhibitors, ß-adrenergic receptor agonists, and Na+/K+ ATPase inhibitors, displayed coherent nuclear size phenotypes focused on a particular cell line or across cell lines and treatment conditions. Several compounds from classes far afield from current chemotherapy regimens were also identified. Seven nuclear size-rectifying compounds selected for further investigation all inhibited cell migration and/or invasion. Conclusions: Our study provides (a) proof of concept that nuclear size might be a valuable target to reduce cell migration/invasion in cancer treatment and (b) the most thorough collection of tool compounds to date reversing nuclear size changes specific to individual cancer-type cell lines. Although these compounds still need to be tested in primary cancer cells, the cell line-specific nuclear size and migration/invasion responses to particular drug classes suggest that cancer type-specific nuclear size rectifiers may help reduce metastatic spread.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Línea Celular Tumoral , Movimiento Celular , Humanos , Masculino , Invasividad Neoplásica/genética , Invasividad Neoplásica/prevención & control , Neoplasias de la Próstata/tratamiento farmacológico
3.
Biochem Soc Trans ; 45(6): 1333-1344, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29150524

RESUMEN

Nuclear size normally scales with the size of the cell, but in cancer this 'karyoplasmic ratio' is disrupted. This is particularly so in more metastatic tumors where changes in the karyoplasmic ratio are used in both diagnosis and prognosis for several tumor types. However, the direction of nuclear size changes differs for particular tumor types: for example in breast cancer, larger nuclear size correlates with increased metastasis, while for lung cancer smaller nuclear size correlates with increased metastasis. Thus, there must be tissue-specific drivers of the nuclear size changes, but proteins thus far linked to nuclear size regulation are widely expressed. Notably, for these tumor types, ploidy changes have been excluded as the basis for nuclear size changes, and so, the increased metastasis is more likely to have a basis in the nuclear morphology change itself. We review what is known about nuclear size regulation and postulate how such nuclear size changes can increase metastasis and why the directionality can differ for particular tumor types.


Asunto(s)
Neoplasias de la Mama/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo
4.
Methods Enzymol ; 569: 79-100, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26778554

RESUMEN

Lamins and associated nuclear envelope transmembrane proteins (NETs) present unique problems for biochemical studies. Lamins form insoluble intermediate filament networks, associate with chromatin, and are also connected via specific NETs to the cytoskeleton, thus further complicating their isolation and purification from mammalian cells. Adding to this complexity, NETs at the inner nuclear membrane function in three distinct environments: (a) their nucleoplasmic domain(s) can bind lamins, chromatin, and transcriptional regulators; (b) they possess one or more integral transmembrane domains; and (c) their lumenal domain(s) function in the unique reducing environment of the nuclear envelope/ER lumen. This chapter describes strategic considerations and protocols to facilitate biochemical studies of lamins and NET proteins in vitro. Studying these proteins in vitro typically involves first expressing specific polypeptide fragments in bacteria and optimizing conditions to purify each fragment. We describe parameters for choosing specific fragments and designing purification strategies and provide detailed purification protocols. Biochemical studies can provide fundamental knowledge including binding strengths and the molecular consequences of disease-causing mutations that will be essential to understand nuclear envelope-genome interactions and nuclear envelope linked disease mechanisms.


Asunto(s)
Laminas/aislamiento & purificación , Proteínas de Complejo Poro Nuclear/aislamiento & purificación , Fragmentos de Péptidos/aislamiento & purificación , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Escherichia coli , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA