Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Intervalo de año de publicación
1.
Front Nutr ; 11: 1393014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699545

RESUMEN

Background: Alcohol misuse, binge drinking pattern, and gender-specific effects in the middle-aged population has been clearly underestimated. In the present study, we focused on understanding gender-specific effects of alcohol exposure on the gut-liver axis and the role of gut microbiota in modulating gender-specific responses to alcohol consumption. Methods: Fifty-two-week-old female and male C57BL/6 mice were fasted for 12 h, and then administered a single oral dose of ethanol (EtOH) (6 g/kg). Controls were given a single dose of PBS. Animals were sacrificed 8 h later. Alternatively, fecal microbiota transplantation (FMT) was performed in 52-week-old male mice from female donors of the same age. Permeability of the large intestine (colon), gut microbiota, liver injury, and inflammation was thoroughly evaluated in all groups. Results: Middle-aged male mice exposed to EtOH showed a significant increase in gut permeability in the large intestine, evaluated by FITC-dextran assay and ZO-1, OCCLUDIN and MUCIN-2 immuno-staining, compared to PBS-treated animals, whilst female mice of the same age also increased their gut permeability, but displayed a partially maintained intestinal barrier integrity. Moreover, there was a significant up-regulation of TLRs and markers of hepatocellular injury, cell death (AST, TUNEL-positive cells) and lipid accumulation (ORO) in male mice after EtOH exposure. Interestingly, FMT from female donors to male mice reduced gut leakiness, modified gut microbiota composition, ameliorated liver injury and inflammation, TLR activation and the senescence phenotype of middle-aged mice. Conclusion: Our findings highlighted the relevance of gender in middle-aged individuals who are exposed to alcohol in the gut-liver axis. Moreover, our study revealed that gender-specific microbiota transplantation might be a plausible therapy in the management of alcohol-related disorders during aging.

2.
Nat Med ; 29(3): 632-645, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928817

RESUMEN

The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.


Asunto(s)
Mieloma Múltiple , Ratones , Animales , Mieloma Múltiple/terapia , Mieloma Múltiple/tratamiento farmacológico , Linfocitos T CD8-positivos , Evasión Inmune , Linfocitos T Reguladores , Inmunoterapia/efectos adversos , Microambiente Tumoral/genética
3.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36854569

RESUMEN

BACKGROUND: Approximately one-third of diffuse large B cell lymphoma (DLBCL) patients exhibit co-expression of MYC and BCL2 (double-expressor lymphoma, DEL) and have a dismal prognosis. Targeted inhibition of the anti-apoptotic protein BCL2 with venetoclax (ABT-199) has been approved in multiple B-cell malignancies and is currently being investigated in clinical trials for DLBCL. Whether BCL2 anti-apoptotic function represents a multifaceted vulnerability for DEL-DLBCL, affecting both lymphoma B cells and T cells within the tumor microenvironment, remains to be elucidated. METHODS: Here, we present novel genetically engineered mice that preclinically recapitulate DEL-DLBCL lymphomagenesis, and evaluate their sensitivity ex vivo and in vivo to the promising combination of venetoclax with anti-CD20-based standard immunotherapy. RESULTS: Venetoclax treatment demonstrated specific killing of MYC+/BCL2+ lymphoma cells by licensing their intrinsically primed apoptosis, and showed previously unrecognized immunomodulatory activity by specifically enriching antigen-activated effector CD8 T cells infiltrating the tumors. Whereas DEL-DLBCL mice were refractory to venetoclax alone, inhibition of BCL2 significantly extended overall survival of mice that were simultaneously treated with a murine surrogate for anti-CD20 rituximab. CONCLUSIONS: These results suggest that the combination of anti-CD20-based immunotherapy and BCL2 inhibition leads to cooperative immunomodulatory effects and improved preclinical responses, which may offer promising therapeutic opportunities for DEL-DLBCL patients.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Inmunoterapia , Linfoma de Células B Grandes Difuso , Animales , Ratones , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Modelos Animales de Enfermedad , Inmunoterapia/métodos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Microambiente Tumoral , Proteínas Proto-Oncogénicas c-myc
4.
Front Immunol ; 13: 1011607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561744

RESUMEN

Bronchiolitis in children is associated with significant rates of morbidity and mortality. Many studies have been performed using samples from hospitalized bronchiolitis patients, but little is known about the immunological responses from infants suffering from mild/moderate bronchiolitis that do not require hospitalization. We have studied a collection of nasal lavage fluid (NLF) samples from outpatient bronchiolitis children as a novel strategy to unravel local humoral and cellular responses, which are not fully characterized. The children were age-stratified in three groups, two of them (GI under 2-months, GII between 2-4 months) presenting a first episode of bronchiolitis, and GIII (between 4 months and 2 years) with recurrent respiratory infections. Here we show that elevated levels of pro-inflammatory cytokines (IL1ß, IL6, TNFα, IL18, IL23), regulatory cytokines (IL10, IL17A) and IFNγ were found in the three bronchiolitis cohorts. However, little or no change was observed for IL33 and MCP1, at difference to previous results from bronchiolitis hospitalized patients. Furthermore, our results show a tendency to IL1ß, IL6, IL18 and TNFα increased levels in children with mild pattern of symptom severity and in those in which non RSV respiratory virus were detected compared to RSV+ samples. By contrast, no such differences were found based on gender distribution. Bronchiolitis NLFs contained more IgM, IgG1, IgG3 IgG4 and IgA than NLF from their age-matched healthy controls. NLF from bronchiolitis children predominantly contained neutrophils, and also low frequency of monocytes and few CD4+ and CD8+ T cells. NLF from infants older than 4-months contained more intermediate monocytes and B cell subsets, including naïve and memory cells. BCR repertoire analysis of NLF samples showed a biased VH1 usage in IgM repertoires, with low levels of somatic hypermutation. Strikingly, algorithmic studies of the mutation profiles, denoted antigenic selection on IgA-NLF repertoires. Our results support the use of NLF samples to analyze immune responses and may have therapeutic implications.


Asunto(s)
Bronquiolitis Viral , Niño , Humanos , Lactante , Bronquiolitis Viral/inmunología , Bronquiolitis Viral/virología , Linfocitos T CD8-positivos , Citocinas/metabolismo , Inmunidad , Inmunoglobulina A/análisis , Inmunoglobulina M/análisis , Factor de Necrosis Tumoral alfa , Virus/aislamiento & purificación
5.
Nucleic Acids Res ; 50(14): 8093-8106, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35849338

RESUMEN

DNA damage response pathways rely extensively on nuclease activity to process DNA intermediates. Exonuclease 1 (EXO1) is a pleiotropic evolutionary conserved DNA exonuclease involved in various DNA repair pathways, replication, antibody diversification, and meiosis. But, whether EXO1 facilitates these DNA metabolic processes through its enzymatic or scaffolding functions remains unclear. Here, we dissect the contribution of EXO1 enzymatic versus scaffolding activity by comparing Exo1DA/DA mice expressing a proven nuclease-dead mutant form of EXO1 to entirely EXO1-deficient Exo1-/- and EXO1 wild type Exo1+/+ mice. We show that Exo1DA/DA and Exo1-/- mice are compromised in canonical DNA repair processing, suggesting that the EXO1 enzymatic role is important for error-free DNA mismatch and double-strand break repair pathways. However, in non-canonical repair pathways, EXO1 appears to have a more nuanced function. Next-generation sequencing of heavy chain V region in B cells showed the mutation spectra of Exo1DA/DA mice to be intermediate between Exo1+/+ and Exo1-/- mice, suggesting that both catalytic and scaffolding roles of EXO1 are important for somatic hypermutation. Similarly, while overall class switch recombination in Exo1DA/DA and Exo1-/- mice was comparably defective, switch junction analysis suggests that EXO1 might fulfill an additional scaffolding function downstream of class switching. In contrast to Exo1-/- mice that are infertile, meiosis progressed normally in Exo1DA/DA and Exo1+/+ cohorts, indicating that a structural but not the nuclease function of EXO1 is critical for meiosis. However, both Exo1DA/DA and Exo1-/- mice displayed similar mortality and cancer predisposition profiles. Taken together, these data demonstrate that EXO1 has both scaffolding and enzymatic functions in distinct DNA repair processes and suggest a more composite and intricate role for EXO1 in DNA metabolic processes and disease.


Asunto(s)
Enzimas Reparadoras del ADN , Reparación del ADN , Exodesoxirribonucleasas , Neoplasias , Animales , Linfocitos B , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Inmunidad , Meiosis/genética , Ratones , Neoplasias/genética , Neoplasias/inmunología , Hipermutación Somática de Inmunoglobulina
7.
Cancers (Basel) ; 13(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34572910

RESUMEN

Besides a recognized role of PD-1/PD-L1 checkpoint in anti-tumour immune evasion, there is accumulating evidence that PD-1/PD-L1 interactions between B and T cells also play an important role in normal germinal center (GC) reactions. Even when smaller in number, T follicular helper cells (TFH) and regulatory T (TFR) or B (Breg) cells are involved in positive selection of GC B cells and may result critical in the lymphoma microenvironment. Here, we discuss a role of PD-1/PD-L1 during tumour evolution in diffuse large B cell lymphoma (DLBCL), a paradigm of GC-derived lymphomagenesis. We depict a progression model, in two phases, where malignant B cells take advantage of positive selection signals derived from correct antigen-presentation and PD-1/PD-L1 inter-cellular crosstalks to survive and initiate tumour expansion. Later, a constant pressure for the accumulation of genetic/epigenetic alterations facilitates that DLBCL cells exhibit higher PD-L1 levels and capacity to secrete IL-10, resembling Breg-like features. As a result, a complex immunosuppressive microenvironment is established where DLBCL cells sustain proliferation and survival by impairing regulatory control of TFR cells and limiting IL-21-mediated anti-tumour functions of TFH cells and maximize the use of PD-1/PD-L1 signaling to escape from CD8+ cytotoxic activity. Integration of these molecular and cellular addictions into a framework may contribute to the better understanding of the lymphoma microenvironment and contribute to the rationale for novel PD-1/PD-L1-based combinational immunotherapies in DLBCL.

8.
Sports Biomech ; : 1-19, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33433293

RESUMEN

The estimation of aerodynamic drag in cycling through road tests has the advantage of considering actual cycling conditions. The main drawback is that its accuracy depends on factors of the testing scenario as the wind speed vw and the road grade θ. For that reason, the effect of vw and θ on the estimation of drag area (CDA) was studied. Numerical and experimental approaches were combined. The numerical approach investigated the sensitivity of CDA to vw and θ perturbations. The experimental approach analysed the effect of including or not vw and θ on the identification of CDA by comparing the changes in the prediction of power delivered. It was found that disregarding small values of vw (e.g. 0.5 m/s) and θ (e.g. gradient of 0.05%) leads to errors in the estimation of CDA of around 10%, referred to the actual value. It was also obtained that the average error of the power prediction when considering vw and θ for the identification of the parameters is about 4.4% and about 25.5% when vw and θ are neglected. It is concluded that including vw and θ data reduces the error on the identification of CDA through outdoor road experiments.

9.
Blood Adv ; 4(5): 893-905, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32150608

RESUMEN

Intraclonal subpopulations of circulating chronic lymphocytic leukemia (CLL) cells with different proliferative histories and reciprocal surface expression of CXCR4 and CD5 have been observed in the peripheral blood of CLL patients and named proliferative (PF), intermediate (IF), and resting (RF) cellular fractions. Here, we found that these intraclonal circulating fractions share persistent DNA methylation signatures largely associated with the mutation status of the immunoglobulin heavy chain locus (IGHV) and their origins from distinct stages of differentiation of antigen-experienced B cells. Increased leukemic birth rate, however, showed a very limited impact on DNA methylation of circulating CLL fractions independent of IGHV mutation status. Additionally, DNA methylation heterogeneity increased as leukemic cells advanced from PF to RF in the peripheral blood. This frequently co-occurred with heterochromatin hypomethylation and hypermethylation of Polycomb-repressed regions in the PF, suggesting accumulation of longevity-associated epigenetic features in recently born cells. On the other hand, transcriptional differences between paired intraclonal fractions confirmed their proliferative experience and further supported a linear advancement from PF to RF in the peripheral blood. Several of these differentially expressed genes showed unique associations with clinical outcome not evident in the bulk clone, supporting the pathological and therapeutic relevance of studying intraclonal CLL fractions. We conclude that independent methylation and transcriptional landscapes reflect both preexisting cell-of-origin fingerprints and more recently acquired hallmarks associated with the life cycle of circulating CLL cells.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfocitos B , Metilación de ADN , Humanos , Leucemia Linfocítica Crónica de Células B/genética
10.
World Allergy Organ J ; 12(8): 100047, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31384359

RESUMEN

BACKGROUND: Small non-coding RNAs (snRNAs) develop important functions related to epigenetic regulation. YRNAs are snRNAs involved in the initiation of DNA replication and RNA stability that regulate gene expression. They have been related to autoimmune, cancer and inflammatory diseases but never before to allergy. In this work we described for the first time in allergic patients the differential expression profile of YRNAs, their regulatory mechanisms and their potential as new diagnostic and therapeutic targets. METHODS: From a previous whole RNAseq study in B cells of allergic patients, differential expression profiles of coding and non-coding transcripts were obtained. To select the most differentially expressed non coding transcripts, fold change and p-values were analyzed. A validation of the expression differences detected was developed in an independent cohort of 304 individuals, 208 allergic patients and 96 controls by using qPCR. Potential binding and retrotransponibility capacity were characterized by in silico structural analysis. Using a novel bioinformatics approach, RNA targets identification, functional enrichment and network analyses were performed. RESULTS: We found that almost 70% of overexpressed non-coding transcripts in allergic patients corresponded to YRNAs. From the three more differentially overexpressed candidates, increased expression was independently confirmed in the peripheral blood of allergic patients. Structural analysis suggested a protein binding capacity decrease and an increase in retrotransponibility. Studies of RNA targets allowed the identification of sequences related to the immune mechanisms underlying allergy. CONCLUSIONS: Overexpression of YRNAs is observed for the first time in allergic patients. Structural and functional information points to their implication on regulatory mechanisms of the disease.

11.
Blood ; 133(22): 2401-2412, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-30975638

RESUMEN

Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.


Asunto(s)
Linfocitos B/inmunología , Antígeno B7-H1/inmunología , Regulación Neoplásica de la Expresión Génica , Activación de Linfocitos , Linfoma de Células B Grandes Difuso/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Escape del Tumor , Proteína p53 Supresora de Tumor/inmunología , Animales , Linfocitos B/patología , Antígeno B7-H1/genética , Femenino , Humanos , Inmunoterapia , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/terapia , Masculino , Ratones , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/inmunología , Linfocitos T/patología , Proteína p53 Supresora de Tumor/genética
12.
J Med Chem ; 61(15): 6546-6573, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890830

RESUMEN

Epigenetic regulators that exhibit aberrant enzymatic activities or expression profiles are potential therapeutic targets for cancers. Specifically, enzymes responsible for methylation at histone-3 lysine-9 (like G9a) and aberrant DNA hypermethylation (DNMTs) have been implicated in a number of cancers. Recently, molecules bearing a 4-aminoquinoline scaffold were reported as dual inhibitors of these targets and showed a significant in vivo efficacy in animal models of hematological malignancies. Here, we report a detailed exploration around three growing vectors born by this chemotype. Exploring this chemical space led to the identification of features to navigate G9a and DNMT1 biological spaces: not only their corresponding exclusive areas, selective compounds, but also common spaces. Thus, we identified from selective G9a and first-in-class DNMT1 inhibitors, >1 log unit between their IC50 values, with IC50 < 25 nM (e.g., 43 and 26, respectively) to equipotent inhibitors with IC50 < 50 nM for both targets (e.g., 13). Their ADME/Tox profiling and antiproliferative efficacies, versus some cancer cell lines, are also reported.


Asunto(s)
Aminoquinolinas/química , Aminoquinolinas/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Diseño de Fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Aminoquinolinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Metilasas de Modificación del ADN/química , Metilasas de Modificación del ADN/metabolismo , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Conformación Proteica
13.
J Med Chem ; 61(15): 6518-6545, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29953809

RESUMEN

Using knowledge- and structure-based approaches, we designed and synthesized reversible chemical probes that simultaneously inhibit the activity of two epigenetic targets, histone 3 lysine 9 methyltransferase (G9a) and DNA methyltransferases (DNMT), at nanomolar ranges. Enzymatic competition assays confirmed our design strategy: substrate competitive inhibitors. Next, an initial exploration around our hit 11 was pursued to identify an adequate tool compound for in vivo testing. In vitro treatment of different hematological neoplasia cell lines led to the identification of molecules with clear antiproliferative efficacies (GI50 values in the nanomolar range). On the basis of epigenetic functional cellular responses (levels of lysine 9 methylation and 5-methylcytosine), an acceptable therapeutic window (around 1 log unit) and a suitable pharmacokinetic profile, 12 was selected for in vivo proof-of-concept ( Nat. Commun. 2017 , 8 , 15424 ). Herein, 12 achieved a significant in vivo efficacy: 70% overall tumor growth inhibition of a human acute myeloid leukemia (AML) xenograft in a mouse model.


Asunto(s)
Antineoplásicos/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Metilasas de Modificación del ADN/química , Metilasas de Modificación del ADN/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular , Conformación Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Pathol ; 245(1): 61-73, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29464716

RESUMEN

The increased risk of Richter transformation (RT) in patients with chronic lymphocytic leukaemia (CLL) due to Epstein-Barr virus (EBV) reactivation during immunosuppressive therapy with fludarabine other targeted agents remains controversial. Among 31 RT cases classified as diffuse large B-cell lymphoma (DLBCL), seven (23%) showed EBV expression. In contrast to EBV- tumours, EBV+ DLBCLs derived predominantly from IGVH-hypermutated CLL, and they also showed CLL-unrelated IGVH sequences more frequently. Intriguingly, despite having different cellular origins, clonally related and unrelated EBV+ DLBCLs shared a previous history of immunosuppressive chemo-immunotherapy, a non-germinal centre DLBCL phenotype, EBV latency programme type II or III, and very short survival. These data suggested that EBV reactivation during therapy-related immunosuppression can transform either CLL cells or non-tumoural B lymphocytes into EBV+ DLBCL. To investigate this hypothesis, xenogeneic transplantation of blood cells from 31 patients with CLL and monoclonal B-cell lymphocytosis (MBL) was performed in Rag2-/- IL2γc-/- mice. Remarkably, the recipients' impaired immunosurveillance favoured the spontaneous outgrowth of EBV+ B-cell clones from 95% of CLL and 64% of MBL patients samples, but not from healthy donors. Eventually, these cells generated monoclonal tumours (mostly CLL-unrelated but also CLL-related), recapitulating the principal features of EBV+ DLBCL in patients. Accordingly, clonally related and unrelated EBV+ DLBCL xenografts showed indistinguishable cellular, virological and molecular features, and synergistically responded to combined inhibition of EBV replication with ganciclovir and B-cell receptor signalling with ibrutinib in vivo. Our study underscores the risk of RT driven by EBV in CLL patients receiving immunosuppressive therapies, and provides the scientific rationale for testing ganciclovir and ibrutinib in EBV+ DLBCL. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Herpesvirus Humano 4/efectos de los fármacos , Inmunosupresores/farmacología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Adulto , Anciano , Linfocitos B/efectos de los fármacos , Linfocitos B/patología , Transformación Celular Neoplásica/patología , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Infecciones por Virus de Epstein-Barr/patología , Femenino , Herpesvirus Humano 4/genética , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Masculino , Persona de Mediana Edad
15.
Nat Commun ; 8: 15424, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28548080

RESUMEN

The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours.


Asunto(s)
Antineoplásicos/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Neoplasias Hematológicas/tratamiento farmacológico , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cristalografía por Rayos X , Metilasas de Modificación del ADN/química , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Femenino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/mortalidad , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Interferones/inmunología , Interferones/metabolismo , Ratones , Ratones Endogámicos BALB C , Microsomas Hepáticos , Simulación del Acoplamiento Molecular , Análisis de Supervivencia , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Blood ; 129(17): 2408-2419, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28188132

RESUMEN

Non-Hodgkin lymphoma comprises a variety of neoplasms, many of which arise from germinal center (GC)-experienced B cells. microRNA-28 (miR-28) is a GC-specific miRNA whose expression is lost in numerous mature B-cell neoplasms. Here we show that miR-28 regulates the GC reaction in primary B cells by impairing class switch recombination and memory B and plasma cell differentiation. Deep quantitative proteomics combined with transcriptome analysis identified miR-28 targets involved in cell-cycle and B-cell receptor signaling. Accordingly, we found that miR-28 expression diminished proliferation in primary and lymphoma cells in vitro. Importantly, miR-28 reexpression in human Burkitt (BL) and diffuse large B-cell lymphoma (DLBCL) xenografts blocked tumor growth, both when delivered in viral vectors or as synthetic, clinically amenable, molecules. Further, the antitumoral effect of miR-28 is conserved in a primary murine in vivo model of BL. Thus, miR-28 replacement is uncovered as a novel therapeutic strategy for DLBCL and BL treatment.


Asunto(s)
Linfocitos B/inmunología , Linfoma de Burkitt/terapia , Regulación Neoplásica de la Expresión Génica , Centro Germinal/inmunología , Linfoma de Células B Grandes Difuso/terapia , MicroARNs/genética , Animales , Linfocitos B/patología , Linfoma de Burkitt/genética , Linfoma de Burkitt/inmunología , Linfoma de Burkitt/patología , Diferenciación Celular , Proliferación Celular , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Centro Germinal/patología , Humanos , Cambio de Clase de Inmunoglobulina , Memoria Inmunológica , Lentivirus/genética , Lentivirus/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/inmunología , Células Plasmáticas/inmunología , Células Plasmáticas/patología , Proteómica , Transcriptoma , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Nat Commun ; 7: 11889, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27297662

RESUMEN

NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas.


Asunto(s)
Proteínas de Homeodominio/genética , Linfocitos/metabolismo , Linfoma de Células B de la Zona Marginal/genética , Receptores de Antígenos de Linfocitos B/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Estimación de Kaplan-Meier , Tejido Linfoide/metabolismo , Linfoma de Células B de la Zona Marginal/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Receptores de Antígenos de Linfocitos B/metabolismo , Quinasa Syk/genética , Quinasa Syk/metabolismo , Factores de Transcripción/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(27): E2470-9, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23754438

RESUMEN

Mammalian Exonuclease 1 (EXO1) is an evolutionarily conserved, multifunctional exonuclease involved in DNA damage repair, replication, immunoglobulin diversity, meiosis, and telomere maintenance. It has been assumed that EXO1 participates in these processes primarily through its exonuclease activity, but recent studies also suggest that EXO1 has a structural function in the assembly of higher-order protein complexes. To dissect the enzymatic and nonenzymatic roles of EXO1 in the different biological processes in vivo, we generated an EXO1-E109K knockin (Exo1(EK)) mouse expressing a stable exonuclease-deficient protein and, for comparison, a fully EXO1-deficient (Exo1(null)) mouse. In contrast to Exo1(null/null) mice, Exo1(EK/EK) mice retained mismatch repair activity and displayed normal class switch recombination and meiosis. However, both Exo1-mutant lines showed defects in DNA damage response including DNA double-strand break repair (DSBR) through DNA end resection, chromosomal stability, and tumor suppression, indicating that the enzymatic function is required for those processes. On a transformation-related protein 53 (Trp53)-null background, the DSBR defect caused by the E109K mutation altered the tumor spectrum but did not affect the overall survival as compared with p53-Exo1(null) mice, whose defects in both DSBR and mismatch repair also compromised survival. The separation of these functions demonstrates the differential requirement for the structural function and nuclease activity of mammalian EXO1 in distinct DNA repair processes and tumorigenesis in vivo.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Reparación del ADN por Unión de Extremidades/genética , Reparación de la Incompatibilidad de ADN/genética , Enzimas Reparadoras del ADN/deficiencia , Enzimas Reparadoras del ADN/genética , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Femenino , Masculino , Meiosis/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Homología de Secuencia de Aminoácido
20.
Br J Haematol ; 162(5): 621-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23795761

RESUMEN

We have previously reported that LITAF is silenced by promoter hypermethylation in germinal centre-derived B-cell lymphomas, but beyond these data the regulation and function of lipopolysaccharide-induced tumour necrosis factor (TNF) factor (LITAF) in B cells are unknown. Gene expression and immunohistochemical studies revealed that LITAF and BCL6 show opposite expression in tonsil B-cell subpopulations and B-cell lymphomas, suggesting that BCL6 may regulate LITAF expression. Accordingly, BCL6 silencing increased LITAF expression, and chromatin immunoprecipitation and luciferase reporter assays demonstrated a direct transcriptional repression of LITAF by BCL6. Gain- and loss-of-function experiments in different B-cell lymphoma cell lines revealed that, in contrast to its function in monocytes, LITAF does not induce lipopolysaccharide-mediated TNF secretion in B cells. However, gene expression microarrays defined a LITAF-related transcriptional signature containing genes regulating autophagy, including MAP1LC3B (LC3B). In addition, immunofluorescence analysis co-localized LITAF with autophagosomes, further suggesting a possible role in autophagy modulation. Accordingly, ectopic LITAF expression in B-cell lymphoma cells enhanced autophagy responses to starvation, which were impaired upon LITAF silencing. Our results indicate that the BCL6-mediated transcriptional repression of LITAF may inhibit autophagy in B cells during the germinal centre reaction, and suggest that the constitutive repression of autophagy responses in BCL6-driven lymphomas may contribute to lymphomagenesis.


Asunto(s)
Autofagia/genética , Linfoma de Células B/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Subgrupos de Linfocitos B/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Intrones , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6 , Factores de Transcripción/metabolismo , Transcripción Genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA