Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oral Oncol ; 157: 106944, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024700

RESUMEN

OBJECTIVES: We describe the development of 3D-printed stents using our digital workflow and their effects on patients enrolled in the lead-in phase of a multi-center, randomized Phase-II trial. MATERIALS AND METHODS: Digital dental models were created for patients using intraoral scanning. Digital processes were implemented to develop the mouth-opening, tongue-depressing, and tongue-lateralizing stents using stereolithography. Time spent and material 3D-printing costs were measured. Physicians assessed mucositis using the Oral Mucositis Assessment Scale (OMAS) and collected MD Anderson Symptom Inventory (MDASI) reports and adverse events (AEs) from patients at various time points (TPs). OMAS and MDASI results were evaluated using paired t-test analysis. RESULTS: 18 patients enrolled into the lead-in phase across 6 independent clinical sites in the USA. 15 patients received stents (average design and fabrication time, 8 h; average material 3D-printing cost, 11 USD). 10 eligible patients with complete OMAS and MDASI reports across all TPs were assessed. OMAS increased significantly from baseline to week 3 of treatment (mean difference = 0.34; 95 % CI, 0.09-0.60; p = 0.01). MDASI increased significantly from baseline to week 3 of treatment (mean difference = 1.02; 95 % CI, 0.40-1.70; p = 0.005), and week 3 of treatment to end of treatment (mean difference = 1.90; 95 % CI, 0.90-2.92; p = 0.002). AEs (grades 1-3) were reported by patients across TPs. Mucositis and radiation dermatitis were primarily attributed to chemoradiation. CONCLUSIONS: 3D-printed stents were successfully fabricated and well tolerated by patients. As patients enroll in the randomized phase of this trial, data herein will establish a baseline for comparative analysis.

2.
J Hepatocell Carcinoma ; 11: 595-606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525156

RESUMEN

Background and Aims: Limited methods exist to accurately characterize the risk of malignant progression of liver lesions. Enhancement pattern mapping (EPM) measures voxel-based root mean square deviation (RMSD) of parenchyma and the contrast-to-noise (CNR) ratio enhances in malignant lesions. This study investigates the utilization of EPM to differentiate between HCC versus cirrhotic parenchyma with and without benign lesions. Methods: Patients with cirrhosis undergoing MRI surveillance were studied prospectively. Cases (n=48) were defined as patients with LI-RADS 3 and 4 lesions who developed HCC during surveillance. Controls (n=99) were patients with and without LI-RADS 3 and 4 lesions who did not develop HCC. Manual and automated EPM signals of liver parenchyma between cases and controls were quantitatively validated on an independent patient set using cross validation with manual methods avoiding parenchyma with artifacts or blood vessels. Results: With manual EPM, RMSD of 0.37 was identified as a cutoff for distinguishing lesions that progress to HCC from background parenchyma with and without lesions on pre-diagnostic scans (median time interval 6.8 months) with an area under the curve (AUC) of 0.83 (CI: 0.73-0.94) and a sensitivity, specificity, and accuracy of 0.65, 0.97, and 0.89, respectively. At the time of diagnostic scans, a sensitivity, specificity, and accuracy of 0.79, 0.93, and 0.88 were achieved with manual EPM with an AUC of 0.89 (CI: 0.82-0.96). EPM RMSD signals of background parenchyma that did not progress to HCC in cases and controls were similar (case EPM: 0.22 ± 0.08, control EPM: 0.22 ± 0.09, p=0.8). Automated EPM produced similar quantitative results and performance. Conclusion: With manual EPM, a cutoff of 0.37 identifies quantifiable differences between HCC cases and controls approximately six months prior to diagnosis of HCC with an accuracy of 89%.


Current surveillance and diagnostic methods in hepatocellular carcinoma are suboptimal. Enhancement pattern mapping is an imaging technique that quantifies lesion signals and may be useful in diagnostic and surveillance methods. Enhancement pattern mapping describes quantifiable differences between malignant and benign liver tissue on contrast-enhanced MRI. It amplifies lesion signal and distinguishes malignancy in a surveillance population. The novel imaging technique was investigated at single institution and analyzed lesions compared to cirrhotic parenchyma. Future efforts will include further risk stratification across LI-RADS group categories. The results provide evidence that enhancement pattern mapping uses available imaging data to distinguish hepatocellular carcinoma from non-cancerous parenchyma with and without benign lesions on scans six months prior to diagnosis with standard MRI. The technique introduces a prospective modality to improve diagnostic accuracy and early detection with the goal of improving clinical outcomes.

3.
Cancer J ; 29(5): 272-278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37796645

RESUMEN

ABSTRACT: Intrahepatic cholangiocarcinoma is a rare disease, yet with rising incidence globally. Most patients are not eligible for potentially curative surgical resection, and many patients with unresectable disease die within 12 months of diagnosis, primarily due to liver failure from the primary tumor. Recent prospective and retrospective studies indicate that local control of the primary tumor can be achieved with hypofractionated radiotherapy in patients with unresectable disease, translating into prolonged survival of these patients. During the time that these encouraging reports for radiotherapy have been published, numerous concurrent studies have also shown that intrahepatic cholangiocarcinoma is a molecularly diverse disease with multiple targetable genetic alterations and a complex tumor microenvironment. These biological insights have translated into new drug approvals for subsets of patients. We review the current knowledge about the biology and targeted treatment of intrahepatic cholangiocarcinoma and describe these developments in the context of modern radiotherapy.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Conductos Biliares Intrahepáticos/patología , Conductos Biliares Intrahepáticos/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Colangiocarcinoma/genética , Colangiocarcinoma/radioterapia , Colangiocarcinoma/diagnóstico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/radioterapia , Neoplasias de los Conductos Biliares/diagnóstico , Microambiente Tumoral
4.
Oral Oncol ; 106: 104665, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32298994

RESUMEN

BACKGROUND AND PURPOSE: Customized mouth-opening-tongue-depressing-stents (MOTDs) may reduce toxicity in patients with head and neck cancers (HNC) receiving radiotherapy (RT). However, making MOTDs requires substantial resources, which limits their utilization. Previously, we described a workflow for fabricating customized 3D-printed MOTDs. This study reports the results of a prospective trial testing the non-inferiority of 3D-printed to standard and commercially-available (TruGuard) MOTDs as measured by patient reported outcomes (PROs). MATERIALS AND METHODS: PROs were collected at 3 time points: (t1) simulation, (t2) prior to RT, (t3) between fractions 15-25 of RT. Study participants received a 3D-printed MOTDs (t1, t2, t3), a wax-pattern (t1), an acrylic-MOTDs (t2, t3) and an optional TruGuard (t1, t2, t3). Patients inserted the stents for 5-10 min and completed a PRO-questionnaire covering ease-of-insertion and removal, gagging, jaw-pain, roughness and stability. Inter-incisal opening and tongue-displacement were recorded. With 39 patients, we estimated 90% power to detect a non-inferiority margin of 2 at a significance level of 0.025. Matched pairs and t-test were used for statistics. RESULTS: 41 patients were evaluable. The 3D-printed MOTDs achieved a significantly better overall PRO score compared to the wax-stent (p = 0.0007) and standard-stent (p = 0.0002), but was not significantly different from the TruGuard (p = 0.41). There was no difference between 3D-printed and standard MOTDs in terms of inter-incisal opening (p = 0.4) and position reproducibility (p = 0.98). The average 3D-printed MOTDs turn-around time was 8 vs 48 h for the standard-stent. CONCLUSIONS: 3D-printed stents demonstrated non-inferior PROs compared to TruGuard and standard-stents. Our 3D-printing process may expand utilization of MOTDs.


Asunto(s)
Neoplasias de Cabeza y Cuello/cirugía , Impresión Tridimensional/instrumentación , Stents/normas , Adulto , Anciano , Femenino , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...