Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
bioRxiv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38895292

RESUMEN

Tuberous sclerosis complex (TSC), an inherited neurodevelopmental (ND) disorder with frequent manifestations of epilepsy and autism spectrum disorder (ASD). TSC is caused by mutations in TSC1 or TSC2 tumor suppressor genes, with encoded proteins hamartin/TSC1 and tuberin/TSC2 forming a functional complex inhibiting mechanistic target of rapamycin complex-1 (mTORC1) signaling, leading to FDA-approved allosteric mTORC1-selective rapamycin analogs for TSC tumors. Rapalogs are effective for TSC-associated hamartomas, however, they are not effective for treating ND manifestations. mTORC1 signaling plays an essential role in protein synthesis through mTORC1-eIF4F and MNK-eIF4E-mediated mRNA translation. Further, the effects on mRNA translation by specific mTORC1 and MNK inhibitors such as RMC-6272 and eFT-508 in TSC have never been explored. Here, employing CRISPR-modified, isogenic TSC2 patient-derived neural progenitor cells (NPCs), we have examined mRNA translation upon loss of TSC2 . Our results reveal dysregulated translation in TSC2 -Null NPCs, which significantly overlap with the translatome from TSC1 -Null NPCs, which we reported recently. Most notably, numerous non-monogenic ASD-NDD- and epilepsy-associated genes identified in patients harboring putative loss-of-function mutations, including protein truncating, or damaging missense variants, were translationally suppressed in TSC2 -Null NPCs, and their translation were reversed upon RMC-6272 or eFT-508 treatment. Our study here establishes the importance of mTORC1-eIF4F and MNK-eIF4E-mediated mRNA translation in TSC, ASD and other neurodevelopmental disorders and lay the groundwork for evaluating drugs in clinical development that target these pathways as a treatment strategy for TSC as well as ASD/NDD.

2.
Neurooncol Adv ; 6(1): vdae024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476930

RESUMEN

Background: NF2-associated meningiomas are progressive, highly morbid, and nonresponsive to chemotherapies, highlighting the need for improved treatments. We have established aberrant activation of the mechanistic target of rapamycin (mTOR) signaling in NF2-deficient tumors, leading to clinical trials with first- and second-generation mTOR inhibitors. However, results have been mixed, showing stabilized tumor growth without shrinkage offset by adverse side effects. To address these limitations, here we explored the potential of third-generation, bi-steric mTOR complex 1 (mTORC1) inhibitors using the preclinical tool compound RMC-6272. Methods: Employing human NF2-deficient meningioma lines, we compared mTOR inhibitors rapamycin (first-generation), INK128 (second-generation), and RMC-6272 (third-generation) using in vitro dose-response testing, cell-cycle analysis, and immunoblotting. Furthermore, the efficacy of RMC-6272 was assessed in NF2-null 3D-spheroid meningioma models, and its in vivo potential was evaluated in 2 orthotopic meningioma mouse models. Results: Treatment of meningioma cells revealed that, unlike rapamycin, RMC-6272 demonstrated superior growth inhibitory effects, cell-cycle arrest, and complete inhibition of phosphorylated 4E-BP1 (mTORC1 readout). Moreover, RMC-6272 had a longer retention time than INK128 and inhibited the expression of several eIF4E-sensitive targets on the protein level. RMC-6272 treatment of NF2 spheroids showed significant shrinkage in size as well as reduced proliferation. Furthermore, in vivo studies in mice revealed effective blockage of meningioma growth by RMC-6272, compared with vehicle controls. Conclusions: Our study in preclinical models of NF2 supports possible future clinical evaluation of third-generation, investigational mTORC1 inhibitors, such as RMC-5552, as a potential treatment strategy for NF2.

3.
Proc Natl Acad Sci U S A ; 121(4): e2318093121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232291

RESUMEN

In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.


Asunto(s)
ARN Helicasas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , ARN Helicasas/genética , ARN Helicasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Ribosomas/metabolismo
4.
Mol Autism ; 14(1): 39, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880800

RESUMEN

BACKGROUND: Tuberous sclerosis complex (TSC) is an inherited neurocutaneous disorder caused by mutations in the TSC1 or TSC2 genes, with patients often exhibiting neurodevelopmental (ND) manifestations termed TSC-associated neuropsychiatric disorders (TAND) including autism spectrum disorder (ASD) and intellectual disability. Hamartin (TSC1) and tuberin (TSC2) proteins form a complex inhibiting mechanistic target of rapamycin complex 1 (mTORC1) signaling. Loss of TSC1 or TSC2 activates mTORC1 that, among several targets, controls protein synthesis by inhibiting translational repressor eIF4E-binding proteins. Using TSC1 patient-derived neural progenitor cells (NPCs), we recently reported early ND phenotypic changes, including increased cell proliferation and altered neurite outgrowth in TSC1-null NPCs, which were unaffected by the mTORC1 inhibitor rapamycin. METHODS: Here, we used polysome profiling, which quantifies changes in mRNA abundance and translational efficiencies at a transcriptome-wide level, to compare CRISPR-edited TSC1-null with CRISPR-corrected TSC1-WT NPCs generated from one TSC donor (one clone/genotype). To assess the relevance of identified gene expression alterations, we performed polysome profiling in postmortem brains from ASD donors and age-matched controls. We further compared effects on translation of a subset of transcripts and rescue of early ND phenotypes in NPCs following inhibition of mTORC1 using the allosteric inhibitor rapamycin versus a third-generation bi-steric, mTORC1-selective inhibitor RMC-6272. RESULTS: Polysome profiling of NPCs revealed numerous TSC1-associated alterations in mRNA translation that were largely recapitulated in human ASD brains. Moreover, although rapamycin treatment partially reversed the TSC1-associated alterations in mRNA translation, most genes related to neural activity/synaptic regulation or ASD were rapamycin-insensitive. In contrast, treatment with RMC-6272 inhibited rapamycin-insensitive translation and reversed TSC1-associated early ND phenotypes including proliferation and neurite outgrowth that were unaffected by rapamycin. CONCLUSIONS: Our work reveals ample mRNA translation alterations in TSC1 patient-derived NPCs that recapitulate mRNA translation in ASD brain samples. Further, suppression of TSC1-associated but rapamycin-insensitive translation and ND phenotypes by RMC-6272 unveils potential implications for more efficient targeting of mTORC1 as a superior treatment strategy for TAND.


Asunto(s)
Trastorno del Espectro Autista , Esclerosis Tuberosa , Humanos , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteínas Supresoras de Tumor/genética , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Madre/metabolismo
5.
Front Vet Sci ; 10: 1086001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266384

RESUMEN

When studying the dynamics of a pathogen in a host population, one crucial question is whether it transitioned from an epidemic (i.e., the pathogen population and the number of infected hosts are increasing) to an endemic stable state (i.e., the pathogen population reached an equilibrium). For slow-growing and slow-evolving clonal pathogens such as Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to discriminate between these two states. This is a result of the combination of suboptimal detection tests so that the actual extent of the pathogen prevalence is often unknown, as well as of the low genetic diversity, which can hide the temporal signal provided by the accumulation of mutations in the bacterial DNA. In recent years, the increased availability, efficiency, and reliability of genomic reading techniques, such as whole-genome sequencing (WGS), have significantly increased the amount of information we can use to study infectious diseases, and therefore, it has improved the precision of epidemiological inferences for pathogens such as M. bovis. In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a developing country where the pathogen has been reported for decades. A total of 91 high-quality sequences were obtained from tissue samples collected in four abattoirs, 64 of which were with complete metadata. We combined these with environmental, demographic, ecological, and cattle movement data to generate inferences using phylodynamic models. Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range over time; therefore, endemic stability is unlikely. This suggests that animal movement plays an important role in transmission. The simultaneous prevalence of M. bovis in co-located cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using genomic tools as part of surveillance would vastly improve our understanding of disease ecology and control strategies.

6.
Res Sq ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034588

RESUMEN

Tuberous sclerosis complex (TSC) is an inherited neurocutaneous disorder caused by mutations in TSC1 or TSC2 genes, with patients often exhibiting neurodevelopmental (ND) manifestations termed TSC-associated neuropsychiatric disorders (TAND) including autism spectrum disorder (ASD). The hamartin-tuberin (TSC1-TSC2) protein complex inactivates mechanistic target of rapamycin complex 1 (mTORC1) signaling, leading to increased protein synthesis via inactivation of translational repressor eIF4E-binding proteins (4E-BPs). In TSC1-null neural progenitor cells (NPCs), we previously reported early ND phenotypic changes, including increased proliferation/altered neurite outgrowth, which were unaffected by mTORC1-inhibitor rapamycin. Here, using polysome-profiling to quantify translational efficiencies at a transcriptome-wide level, we observed numerous TSC1-dependent alterations in NPCs, largely recapitulated in post-mortem brains from ASD donors. Although rapamycin partially reversed TSC1-associated alterations, most neural activity/synaptic- or ASD-related genes remained insensitive but were inhibited by third-generation bi-steric, mTORC1-selective inhibitor RMC-6272, which also reversed altered ND phenotypes. Together these data reveal potential implications for treatment of TAND.

7.
RNA ; 29(6): 826-835, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36882295

RESUMEN

Inhibition of eukaryotic translation initiation through unscheduled RNA clamping of the DEAD-box (DDX) RNA helicases eIF4A1 and eIF4A2 has been documented for pateamine A (PatA) and rocaglates-two structurally different classes of compounds that share overlapping binding sites on eIF4A. Clamping of eIF4A to RNA causes steric blocks that interfere with ribosome binding and scanning, rationalizing the potency of these molecules since not all eIF4A molecules need to be engaged to elicit a biological effect. In addition to targeting translation, PatA and analogs have also been shown to target the eIF4A homolog, eIF4A3-a helicase necessary for exon junction complex (EJC) formation. EJCs are deposited on mRNAs upstream of exon-exon junctions and, when present downstream from premature termination codons (PTCs), participate in nonsense-mediated decay (NMD), a quality control mechanism aimed at preventing the production of dominant-negative or gain-of-function polypeptides from faulty mRNA transcripts. We find that rocaglates can also interact with eIF4A3 to induce RNA clamping. Rocaglates also inhibit EJC-dependent NMD in mammalian cells, but this does not appear to be due to induced eIF4A3-RNA clamping, but rather a secondary consequence of translation inhibition incurred by clamping eIF4A1 and eIF4A2 to mRNA.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , ARN , Animales , ARN/metabolismo , ARN Mensajero/metabolismo , Codón sin Sentido , Exones , Factor 4A Eucariótico de Iniciación/química , Mamíferos/genética
8.
Wiley Interdiscip Rev RNA ; 14(2): e1738, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35581936

RESUMEN

RNA helicases constitute a large family of proteins that play critical roles in mediating RNA function. They have been implicated in all facets of gene expression pathways involving RNA, from transcription to processing, transport and translation, and storage and decay. There is significant interest in developing small molecule inhibitors to RNA helicases as some family members have been documented to be dysregulated in neurological and neurodevelopment disorders, as well as in cancers. Although different functional properties of RNA helicases offer multiple opportunities for small molecule development, molecular staples have recently come to the forefront. These bifunctional molecules interact with both protein and RNA components to lock them together, thereby imparting novel gain-of-function properties to their targets. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Asunto(s)
Neoplasias , ARN , Humanos , ARN/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas
9.
Front Vet Sci ; 9: 897481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774979

RESUMEN

Rift Valley fever (RVF) is an important emerging zoonoses causing abortion and neonatal deaths in livestock and hemorrhagic fever in humans. It is typically characterized by acute epidemics with abortion storms often preceding human disease and these events have been associated with the El Niño weather cycles. Outside of areas that experience epidemics, little is known about its epidemiology. Here, we present results from a serological study using biobank samples from a study of cattle conducted in 2013 at two sites in Cameroon. A total of 1,458 cattle from 100 herds were bled and sera screened using a commercially available RVF ELISA. The overall design-adjusted animal-level apparent seroprevalence of RVF exposure for the Northwest Region (NWR) of Cameroon was 6.5% (95% CI: 3.9-11.0) and for the Vina Division (VIN) of the Adamawa Region was 8.2% (95% CI: 6.2-11.0). The age-stratified serological results were also used to estimate the force of infection, and the age-independent estimates were 0.029 for the VIN and 0.024 for the NWR. The effective reproductive number was ~1.08. Increasing age and contact with wild antelope species were associated with an increased risk of seropositivity, while high altitudes and contact with buffalo were associated with a reduced risk of seropositivity. The serological patterns are more consistent with an endemical stability rather than the more typical epidemic patterns seen in East Africa. However, there is little surveillance in livestock for abortion storms or in humans with fevers in Cameroon, and it is, therefore, difficult to interpret these observations. There is an urgent need for an integrated One Health approach to understand the levels of human- and livestock-related clinical and asymptomatic disease and whether there is a need to implement interventions such as vaccination.

10.
Pediatrics ; 149(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35490284

RESUMEN

The purpose of this policy statement is to update the 2004 American Academy of Pediatrics clinical report and provide enhanced guidance for institutions, administrators, and providers in the development and operation of a pediatric intermediate care unit (IMCU). Since 2004, there have been significant advances in pediatric medical, surgical, and critical care that have resulted in an evolution in the acuity and complexity of children potentially requiring IMCU admission. A group of 9 clinical experts in pediatric critical care, hospital medicine, intermediate care, and surgery developed a consensus on priority topics requiring updates, reviewed the relevant evidence, and, through a series of virtual meetings, developed the document. The intended audience of this policy statement is broad and includes pediatric critical care professionals, pediatric hospitalists, pediatric surgeons, other pediatric medical and surgical subspecialists, general pediatricians, nurses, social workers, care coordinators, hospital administrators, health care funders, and policymakers, primarily in resource-rich settings. Key priority topics were delineation of core principles for an IMCU, clarification of target populations, staffing recommendations, and payment.


Asunto(s)
Médicos Hospitalarios , Pediatría , Niño , Cuidados Críticos/métodos , Atención a la Salud , Hospitalización , Humanos , Estados Unidos
11.
Cell Mol Life Sci ; 78(19-20): 6709-6719, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34559254

RESUMEN

Eukaryotic initiation factor (eIF) 4F plays a central role in the ribosome recruitment phase of cap-dependent translation. This heterotrimeric complex consists of a cap binding subunit (eIF4E), a DEAD-box RNA helicase (eIF4A), and a large bridging protein (eIF4G). In mammalian cells, there are two genes encoding eIF4A (eIF4A1 and eIF4A2) and eIF4G (eIF4G1 and eIF4G3) paralogs that can assemble into eIF4F complexes. To query the essential nature of the eIF4F subunits in normal development, we used CRISPR/Cas9 to generate mouse strains with targeted ablation of each gene encoding the different eIF4F subunits. We find that Eif4e, Eif4g1, and Eif4a1 are essential for viability in the mouse, whereas Eif4g3 and Eif4a2 are not. However, Eif4g3 and Eif4a2 do play essential roles in spermatogenesis. Crossing of these strains to the lymphoma-prone Eµ-Myc mouse model revealed that heterozygosity at the Eif4e or Eif4a1 loci significantly delayed tumor onset. Lastly, tumors derived from Eif4e∆38 fs/+/Eµ-Myc or Eif4a1∆5 fs/+/Eµ-Myc mice show increased sensitivity to the chemotherapeutic agent doxorubicin, in vivo. Our study reveals that eIF4A2 and eIF4G3 play non-essential roles in gene expression regulation during embryogenesis; whereas reductions in eIF4E or eIF4A1 levels are protective against tumor development in a murine Myc-driven lymphoma setting.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Factor 4F Eucariótico de Iniciación/genética , Animales , Femenino , Regulación de la Expresión Génica/genética , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Subunidades de Proteína/genética , Espermatogénesis/genética
12.
Sci Rep ; 11(1): 18516, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531456

RESUMEN

Rocaglates are a class of eukaryotic translation initiation inhibitors that are being explored as chemotherapeutic agents. They function by targeting eukaryotic initiation factor (eIF) 4A, an RNA helicase critical for recruitment of the 40S ribosome (and associated factors) to mRNA templates. Rocaglates perturb eIF4A activity by imparting a gain-of-function activity to eIF4A and mediating clamping to RNA. To appreciate how rocaglates could best be enabled in the clinic, an understanding of resistance mechanisms is important, as this could inform on strategies to bypass such events as well as identify responsive tumor types. Here, we report on the results of a positive selection, ORFeome screen aimed at identifying cDNAs capable of conferring resistance to rocaglates. Two of the most potent modifiers of rocaglate response identified were the transcription factors FOXP3 and NR1I3, both of which have been implicated in ABCB1 regulation-the gene encoding P-glycoprotein (Pgp). Pgp has previously been implicated in conferring resistance to silvestrol, a naturally occurring rocaglate, and we show here that this extends to additional synthetic rocaglate derivatives. In addition, FOXP3 and NR1I3 impart a multi-drug resistant phenotype that is reversed upon inhibition of Pgp, suggesting a potential therapeutic combination strategy.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Benzofuranos/farmacología , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factores de Transcripción Forkhead/genética , Receptores Citoplasmáticos y Nucleares/genética , Línea Celular , Receptor de Androstano Constitutivo , Regulación de la Expresión Génica/efectos de los fármacos , Pruebas Genéticas , Humanos
13.
J Cell Mol Med ; 25(14): 7089-7094, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34114734

RESUMEN

MYSM1 is a chromatin-binding protein, widely investigated for its functions in haematopoiesis in human and mouse; however, its role in haematologic malignancies remains unexplored. Here, we investigate the cross-talk between MYSM1 and oncogenic cMYC in the transcriptional regulation of genes encoding ribosomal proteins, and the implications of these mechanisms for cMYC-driven carcinogenesis. We demonstrate that in cMYC-driven B cell lymphoma in mouse models, MYSM1-loss represses ribosomal protein gene expression and protein synthesis. Importantly, the loss of MYSM1 also strongly inhibits cMYC oncogenic activity and protects against B cell lymphoma onset and progression in the mouse models. This advances the understanding of the molecular and transcriptional mechanisms of lymphomagenesis, and suggests MYSM1 as a possible drug target for cMYC-driven malignancies.


Asunto(s)
Linfoma de Células B/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transactivadores/deficiencia , Proteasas Ubiquitina-Específicas/deficiencia , Animales , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B/genética , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
14.
RNA ; 27(6): 676-682, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33762403

RESUMEN

Circular (circ) RNA expression vectors are used as a method of identifying and characterizing RNA sequences that harbor internal ribosome entry site (IRES) activity. During the course of developing a vector series tailored for IRES discovery, we found evidence for the occurrence of trans-spliced mRNAs arising when sequences with promoter activity were embedded between the upstream CTD and downstream NTD exons of the pre-mRNA. These trans-spliced products regenerate the same open reading frame expected from a circRNA and can lead to false-positive signals in screens relying on circRNA expression vectors for IRES discovery. Our results caution against interpretations of IRES activity solely based on results obtained from circRNA expression vectors.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , ARN Circular/metabolismo , Trans-Empalme , Animales , Expresión Génica , Vectores Genéticos/genética , Humanos , Regiones Promotoras Genéticas , Precursores del ARN/genética
15.
Mol Cancer Ther ; 20(1): 37-49, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33087510

RESUMEN

We report the discovery, via a unique high-throughput screening strategy, of a novel bioactive anticancer compound: Thiol Alkylating Compound Inducing Massive Apoptosis (TACIMA)-218. We demonstrate that this molecule engenders apoptotic cell death in genetically diverse murine and human cancer cell lines, irrespective of their p53 status, while sparing normal cells. TACIMA-218 causes oxidative stress in the absence of protective antioxidants normally induced by Nuclear factor erythroid 2-related factor 2 activation. As such, TACIMA-218 represses RNA translation and triggers cell signaling cascade alterations in AKT, p38, and JNK pathways. In addition, TACIMA-218 manifests thiol-alkylating properties resulting in the disruption of redox homeostasis along with key metabolic pathways. When administered to immunocompetent animals as a monotherapy, TACIMA-218 has no apparent toxicity and induces complete regression of pre-established lymphoma and melanoma tumors. In sum, TACIMA-218 is a potent oxidative stress inducer capable of selective cancer cell targeting.


Asunto(s)
Antineoplásicos/farmacología , Oxidantes/farmacología , Alquilación , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cromatina/metabolismo , Cisteína/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucólisis/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
16.
Cell Rep Med ; 2(12): 100455, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35028603

RESUMEN

Dendritic cells (DCs) excel at cross-presenting antigens, but their effectiveness as cancer vaccine is limited. Here, we describe a vaccination approach using mesenchymal stromal cells (MSCs) engineered to express the immunoproteasome complex (MSC-IPr). Such modification instills efficient antigen cross-presentation abilities associated with enhanced major histocompatibility complex class I and CD80 expression, de novo production of interleukin-12, and higher chemokine secretion. This cross-presentation capacity of MSC-IPr is highly dependent on their metabolic activity. Compared with DCs, MSC-IPr hold the ability to cross-present a vastly different epitope repertoire, which translates into potent re-activation of T cell immunity against EL4 and A20 lymphomas and B16 melanoma tumors. Moreover, therapeutic vaccination of mice with pre-established tumors efficiently controls cancer growth, an effect further enhanced when combined with antibodies targeting PD-1, CTLA4, LAG3, or 4-1BB under both autologous and allogeneic settings. Therefore, MSC-IPr constitute a promising subset of non-hematopoietic antigen-presenting cells suitable for designing universal cell-based cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Linfoma/inmunología , Melanoma Experimental/inmunología , Células Madre Mesenquimatosas/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Ingeniería de Proteínas , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Reprogramación Celular , Células Dendríticas/inmunología , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Fenotipo , Vacunación
17.
Nucleic Acids Res ; 48(17): 9521-9537, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32766783

RESUMEN

Hippuristanol (Hipp) is a natural product that selectively inhibits protein synthesis by targeting eukaryotic initiation factor (eIF) 4A, a DEAD-box RNA helicase required for ribosome recruitment to mRNA templates. Hipp binds to the carboxyl-terminal domain of eIF4A, locks it in a closed conformation, and inhibits its RNA binding. The dependencies of mRNAs for eIF4A during initiation is contingent on the degree of secondary structure within their 5' leader region. Interest in targeting eIF4A therapeutically in cancer and viral-infected settings stems from the dependencies that certain cellular (e.g. pro-oncogenic, pro-survival) and viral mRNAs show towards eIF4A. Using a CRISPR/Cas9-based variomics screen, we identify functional EIF4A1 Hipp-resistant alleles, which in turn allowed us to link the translation-inhibitory and cytotoxic properties of Hipp to eIF4A1 target engagement. Genome-wide translational profiling in the absence or presence of Hipp were undertaken and our validation studies provided insight into the structure-activity relationships of eIF4A-dependent mRNAs. We find that mRNA 5' leader length, overall secondary structure and cytosine content are defining features of Hipp-dependent mRNAs.


Asunto(s)
Regiones no Traducidas 5' , Resistencia a Antineoplásicos/genética , Factor 4A Eucariótico de Iniciación/genética , Esteroles/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Mutación , Ribosomas/genética , Ribosomas/metabolismo
18.
Nucleic Acids Res ; 48(15): 8562-8575, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32749456

RESUMEN

Eukaryotic cellular mRNAs possess a 5' cap structure (m7GpppN) which plays a critical role in translation initiation mediated by eukaryotic initiation factor (eIF) 4F. The heterotrimeric eIF4F complex possesses several activities imparted by its subunits that include cap recognition (by eIF4E), RNA unwinding (eIF4A), and factor/ribosome recruitment (eIF4G). Mammalian cells have paralogs of all three eIF4F subunits and it remains an open question as to whether these all can participate in the process of ribosome recruitment. To query the activities of the eIF4F subunits in translation initiation, we adopted an RNA-tethering assay in which select subunits are recruited to a specific address on a reporter mRNA template. We find that all eIF4F subunits can participate in the initiation process. Based on eIF4G:eIF4A structural information, we also designed obligate dimer pairs to probe the activity of all combinations of eIF4G and eIF4A paralogs. We demonstrate that both eIF4GI and eIF4GII can associate with either eIF4A1 or eIF4A2 to recruit ribosomes to mRNA templates. In combination with eIF4E and eIF4E3, our results indicate the presence of up to eight eIF4F complexes that can operate in translation initiation.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Biosíntesis de Proteínas , Secuencia de Aminoácidos/genética , Animales , Factor 4E Eucariótico de Iniciación/química , Factor 4F Eucariótico de Iniciación/química , Células HEK293 , Humanos , Ratones , Unión Proteica/genética , Análogos de Caperuza de ARN/genética , Caperuzas de ARN/genética , ARN Mensajero/genética , Ribosomas/genética
19.
Cell Rep ; 30(8): 2481-2488.e5, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101697

RESUMEN

Rocaglates are a diverse family of biologically active molecules that have gained tremendous interest in recent years due to their promising activities in pre-clinical cancer studies. As a result, this family of compounds has been significantly expanded through the development of efficient synthetic schemes. However, it is unknown whether all of the members of the rocaglate family act through similar mechanisms of action. Here, we present a comprehensive study comparing the biological activities of >200 rocaglates to better understand how the presence of different chemical entities influences their biological activities. Through this, we find that most rocaglates preferentially repress the translation of mRNAs containing purine-rich 5' leaders, but certain rocaglates lack this bias in translation repression. We also uncover an aspect of rocaglate mechanism of action in which the pool of translationally active eIF4F is diminished due to the sequestration of the complex onto RNA.


Asunto(s)
Benzofuranos/farmacología , Factor 4A Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/genética , Mutación con Ganancia de Función/genética , Animales , Secuencia de Bases , Bioensayo , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Nat Commun ; 10(1): 5151, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723131

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with limited treatment options. Although metabolic reprogramming is a hallmark of many cancers, including PDA, previous attempts to target metabolic changes therapeutically have been stymied by drug toxicity and tumour cell plasticity. Here, we show that PDA cells engage an eIF4F-dependent translation program that supports redox and central carbon metabolism. Inhibition of the eIF4F subunit, eIF4A, using the synthetic rocaglate CR-1-31-B (CR-31) reduced the viability of PDA organoids relative to their normal counterparts. In vivo, CR-31 suppresses tumour growth and extends survival of genetically-engineered murine models of PDA. Surprisingly, inhibition of eIF4A also induces glutamine reductive carboxylation. As a consequence, combined targeting of eIF4A and glutaminase activity more effectively inhibits PDA cell growth both in vitro and in vivo. Overall, our work demonstrates the importance of eIF4A in translational control of pancreatic tumour metabolism and as a therapeutic target against PDA.


Asunto(s)
Biosíntesis de Proteínas , Animales , Carcinogénesis , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4A Eucariótico de Iniciación/metabolismo , Glutatión/metabolismo , Humanos , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Oxidación-Reducción , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA