Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.419
Filtrar
1.
Front Immunol ; 15: 1379175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086481

RESUMEN

Introduction: Intra-tumoral B cells mediate a plethora of immune effector mechanisms with key roles in anti-tumor immunity and serve as positive prognostic indicators in a variety of solid tumor types, including epithelial ovarian cancer (EOC). Several aspects of intra-tumoral B cells remain unclear, such as their state of activation, antigenic repertoires, and capacity to mature into plasma cells. Methods: B lymphocytes were isolated from primary EOC tissue and malignant ascites and were maintained in cell culture medium. The stably maintained cell lines were profiled with flow cytometry and B cell receptor sequencing. Secreted antibodies were tested with a human proteome array comprising more than 21,000 proteins, followed by ELISA for validation. Originating tumor samples were used for spatial profiling with chip cytometry. Results: Antibody-secreting B lymphocytes were isolated from the ovarian tumor microenvironment (TME) of four different EOC patients. The highly clonal cell populations underwent spontaneous immortalization in vitro, were stably maintained in an antibody-secreting state, and showed presence of Epstein-Barr viral (EBV) proteins. All originating tumors had high frequency of tumor-infiltrating B cells, present as lymphoid aggregates, or tertiary lymphoid structures. The antigens recognized by three of the four cell lines are coil-coil domain containing protein 155 (CCDC155), growth factor receptor-bound protein 2 (GRB2), and pyruvate dehydrogenase phosphatase2 (PDP2), respectively. Anti-CCDC155 circulating IgG antibodies were detected in 9 of 20 (45%) of EOC patients' sera. Tissue analyses with multiparameter chip cytometry shows that the antibodies secreted by these novel human B cell lines engage their cognate antigens on tumor cells. Discussion: These studies demonstrate that within the tumor-infiltrating lymphocyte population in EOC resides a low frequency population of antibody-secreting B cells that have been naturally exposed to EBV. Once stably maintained, these novel cell lines offer unique opportunities for future studies on intratumor B cell biology and new target antigen recognition, and for studies on EBV latency and/or viral reactivation in the TME of non-EBV related solid tumors such as the EOC.


Asunto(s)
Ascitis , Linfocitos B , Herpesvirus Humano 4 , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/inmunología , Herpesvirus Humano 4/inmunología , Linfocitos B/inmunología , Ascitis/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Latencia del Virus/inmunología , Microambiente Tumoral/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Carcinoma Epitelial de Ovario/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular Tumoral
2.
Front Microbiol ; 15: 1437572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086644

RESUMEN

Introduction: The oral trichomonad Trichomonas tenax is increasingly appreciated as a likely contributor to periodontitis, a chronic inflammatory disease induced by dysbiotic microbiota, in humans and domestic animals and is strongly associated with its worst prognosis. Our current understanding of the molecular basis of T. tenax interactions with host cells and the microbiota of the oral cavity are still rather limited. One laboratory strain of T. tenax (Hs-4:NIH/ATCC 30207) can be grown axenically and two draft genome assemblies have been published for that strain, although the structural and functional annotation of these genomes is not available. Methods: GenSAS and Galaxy were used to annotate two publicly available draft genomes for T. tenax, with a focus on protein-coding genes. A custom pipeline was used to annotate the CAZymes for T. tenax and the human sexually transmitted parasite Trichomonas vaginalis, the most well-characterized trichomonad. A combination of bioinformatics analyses was used to screen for homologs of T. vaginalis virulence and colonization factors within the T. tenax annotated proteins. Results: Our annotation of the two T. tenax draft genome sequences and their comparison with T. vaginalis proteins provide evidence for several candidate virulence factors. These include candidate surface proteins, secreted proteins and enzymes mediating potential interactions with host cells and/or members of the oral microbiota. The CAZymes annotation identified a broad range of glycoside hydrolase (GH) families, with the majority of these being shared between the two Trichomonas species. Discussion: The presence of candidate T. tenax virulence genes supports the hypothesis that this species is associated with periodontitis through direct and indirect mechanisms. Notably, several GH proteins could represent potential new virulence factors for both Trichomonas species. These data support a model where T. tenax interactions with host cells and members of the oral microbiota could synergistically contribute to the damaging inflammation characteristic of periodontitis, supporting a causal link between T. tenax and periodontitis.

4.
J Thorac Oncol ; 19(8): 1155-1163, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112003

RESUMEN

Worldwide, lung cancer is the most common killer among cancers, advanced disease has worse outcomes, earlier stage detection leads to better outcomes, and high-quality screening has a favorable net benefit. With the mortality reduction recognized from annual low-radiation dose computed tomography by screening those at high risk, there has been consideration that this benefit could translate to those who have never smoked. There have been several large-scale, single-arm, observational trials in Asia in persons with light to no smoking histories, with or without a family history of lung cancer, which have revealed high or higher lung cancer detection rates than previously reported in high-risk persons who currently or formerly smoked. The Early Detection Program for Lung Cancer in Taiwan, of nearly 50,000 persons, revealed that the cancer detection rate for those screened with low-radiation dose computed tomography was more than twofold higher in light- or never-smokers with a family history of lung cancer compared with high-risk persons with more than 30 or more pack-years exposure and meeting U.S. Preventative Services Task Force criteria for screening. In addition, more than 90% of the cancers detected in those with a family history were in early stage. On the basis of those findings, the researchers concluded that screening first-degree relatives of those with a family history of lung cancer, irrespective of smoking history, would lead to a decrease in lung cancer mortality. We believe that the findings in this cohort and others like it represent substantial overdiagnosis and that the harms associated with screening a population that has a low likelihood of developing lethal cancers have not been thoroughly considered. Here, we provide our perspective and consider the potential benefits and harms of screening populations outside those currently eligible using the U.S. Preventative Services Task Force criteria.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Detección Precoz del Cáncer/métodos , Factores de Riesgo , Tomografía Computarizada por Rayos X/métodos , Tamizaje Masivo/métodos
5.
Nat Med ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112795

RESUMEN

Clinical trials in metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis) require histologic scoring for assessment of inclusion criteria and endpoints. However, variability in interpretation has impacted clinical trial outcomes. We developed an artificial intelligence-based measurement (AIM) tool for scoring MASH histology (AIM-MASH). AIM-MASH predictions for MASH Clinical Research Network necroinflammation grades and fibrosis stages were reproducible (κ = 1) and aligned with expert pathologist consensus scores (κ = 0.62-0.74). The AIM-MASH versus consensus agreements were comparable to average pathologists for MASH Clinical Research Network scores (82% versus 81%) and fibrosis (97% versus 96%). Continuous scores produced by AIM-MASH for key histological features of MASH correlated with mean pathologist scores and noninvasive biomarkers and strongly predicted progression-free survival in patients with stage 3 (P < 0.0001) and stage 4 (P = 0.03) fibrosis. In a retrospective analysis of the ATLAS trial (NCT03449446), responders receiving study treatment showed a greater continuous change in fibrosis compared with placebo (P = 0.02). Overall, these results suggest that AIM-MASH may assist pathologists in histologic review of MASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient responses.

7.
New Phytol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101264

RESUMEN

In severely phosphorus (P)-impoverished environments, plants have evolved to use P very efficiently. Yet, it is unclear how P allocation in leaves contributes to their photosynthetic P-use efficiency (PPUE) and position along the leaf economics spectrum (LES). We address this question in 10 species of Banksia and Hakea, two highly P-efficient Proteaceae genera. We characterised traits in leaves of Banksia and Hakea associated with the LES: leaf mass per area, light-saturated photosynthetic rates, P and nitrogen concentrations, and PPUE. We also determined leaf P partitioning to five biochemical fractions (lipid, nucleic acid, metabolite, inorganic and residual P) and their possible association with the LES. For both genera, PPUE was negatively correlated with fractional allocation of P to lipids, but positively correlated with that to metabolites. For Banksia only, PPUE was negatively correlated with residual P, highlighting a strategy contrasting to that of Hakea. Phosphorus-allocation patterns significantly explained PPUE but were not linked to the resource acquisition vs resource conservation gradient defined by the LES. We conclude that distinct P-allocation patterns enable species from different genera to achieve high PPUE and discuss the implications of different P investments. We surmise that different LES axes representing different ecological strategies coexist in extremely P-impoverished environments.

8.
Reprod Biol Endocrinol ; 22(1): 100, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118090

RESUMEN

BACKGROUND: Patients with endometriosis suffer with chronic pelvic pain and infertility, and from the lack of pharmacologic therapies that consistently halt disease progression. Differences in the endometrium of patients with endometriosis vs. unaffected controls are well-documented. Specifically, shed endometrial tissues (delivered to the pelvic cavity via retrograde menstruation) reveal that a subset of stromal cells exhibiting pro-inflammatory, pro-fibrotic, and pro-senescence-like phenotypes is enhanced in endometriosis patients compared to controls. Additionally, cultured biopsy-derived endometrial stromal cells from endometriosis patients exhibit impaired decidualization, a defined differentiation process required for human embryo implantation and pregnancy. Quercetin, a senolytic agent, shows therapeutic potential for pulmonary fibrosis, a disorder attributed to senescent pulmonary fibroblasts. In rodent models of endometriosis, quercetin shows promise, and quercetin improves decidualization in vitro. However, the exact mechanisms are not completely understood. Therefore, we investigated the effects of quercetin on menstrual effluent-derived endometrial stromal cells from endometriosis patients and unaffected controls to define the signaling pathways underlying quercetin's effects on endometrial stromal cells. METHODS: Menstrual effluent-derived endometrial stromal cells were collected and cultured from unaffected controls and endometriosis patients and then, low passage cells were treated with quercetin (25 µM) under basal or standard decidualization conditions. Decidualization responses were analyzed by measuring the production of IGFBP1 and PRL. Also, the effects of quercetin on intracellular cAMP levels and cellular oxidative stress responses were measured. Phosphokinase arrays, western blotting, and flow cytometry methods were performed to define the effects of quercetin on various signaling pathways and the potential mechanistic roles of quercetin. RESULTS: Quercetin significantly promotes decidualization of control- and endometriosis-endometrial stromal cells. Quercetin substantially reduces the phosphorylation of multiple signaling molecules in the AKT and ERK1/2 pathways, while enhancing the phosphorylation of p53 and total p53 levels. Furthermore, p53 inhibition blocks decidualization while p53 activation promotes decidualization. Finally, we provide evidence that quercetin increases apoptosis of endometrial stromal cells with a senescent-like phenotype. CONCLUSIONS: These data provide insight into the mechanisms of action of quercetin on endometrial stromal cells and warrant future clinical trials to test quercetin and other senolytics for treating endometriosis.


Asunto(s)
Senescencia Celular , Endometriosis , Proteínas Proto-Oncogénicas c-akt , Quercetina , Células del Estroma , Proteína p53 Supresora de Tumor , Quercetina/farmacología , Femenino , Humanos , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adulto , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Senescencia Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Endometrio/patología , Decidua/efectos de los fármacos , Decidua/metabolismo , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Cultivadas
9.
Eur Respir J ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117429

RESUMEN

BACKGROUND: Recurrent respiratory tract infections (rRTIs) are a common reason for immunodiagnostic testing in children, which relies on serum antibody level measurements. However, because RTIs predominantly affect the respiratory mucosa, serum antibodies may inaccurately reflect local immune defences. We investigated antibody responses in saliva and their interplay with the respiratory microbiota in relation to RTI severity and burden in young children with rRTIs. METHODS: We conducted a prospective cohort study including 100 children aged <10 years with rRTIs, their family members, and healthy healthcare professionals. Total and polyreactive antibody concentrations were determined in serum and saliva (ELISA); respiratory microbiota composition (16S-rRNA-sequencing) and respiratory viruses (qPCR) were characterised in nasopharyngeal swabs. Proteomic analysis (Olink®) was performed on saliva and serum samples. RTI symptoms were monitored with a daily cell phone application and assessed using latent class analysis and negative binomial mixed models. RESULTS: Serum antibody levels were not associated with RTI severity. Strikingly, 28% of salivary antibodies and only 2% of serum antibodies displayed polyreactivity (p<0.001). Salivary polyreactive immunoglobulin A (IgA) was negatively associated with recurrent lower RTIs (aOR 0.80 [95% CI 0.67-0.94]) and detection of multiple respiratory viruses (aOR 0.76 [95% CI 0.61-0.96]). Haemophilus influenzae abundance was positively associated with RTI symptom burden (regression coefficient 0.07 [95% CI 0.02-0.12]). CONCLUSION: These results highlight the importance of mucosal immunity in RTI severity and burden and suggest that the level of salivary polyreactive IgA and H. influenzae abundance may serve as indicators of infection risk and severity in young children with rRTIs.

10.
J Int Med Res ; 52(8): 3000605241264799, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102503

RESUMEN

OBJECTIVES: Nasogastric tube use can lead to pressure injury. Some nasogastric tube securement devices (NG-SD) include hard plastic components. In the current study, we assessed the differences in strain profiles for two NG-SD, one with hard segments and one without hard segments, using finite element analysis (FEA) to measure strain and deformation occurring at the nasogastric tube-tissue interface. METHODS: FEA in silico models of devices were based on device mechanical test data and clinically relevant placements. Peak strain values were determined by modelling different scenarios using Abaqus software whereby the tubing is moved during wear. RESULTS: The modelling showed peak strains ranging from 52% to 434% for the two NG-SD depending on the tubing placement and device type. Peak strain was always higher for the hard plastic device. Tissue strain energy was a minimum of 133.8 mJ for the NG-SD with no hard parts and a maximum of 311.6 mJ for the NG-SD with hard parts. CONCLUSIONS: This study provided evidence through in silico modelling that NG-SD without hard components may impart less strain and stress to tissues which may provide an option for tube securement that is less likely to cause medical device-related pressure injury.


Asunto(s)
Simulación por Computador , Análisis de Elementos Finitos , Intubación Gastrointestinal , Intubación Gastrointestinal/instrumentación , Intubación Gastrointestinal/métodos , Intubación Gastrointestinal/efectos adversos , Humanos , Estrés Mecánico
11.
Front Endocrinol (Lausanne) ; 15: 1432928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104812

RESUMEN

We recently reported that a novel chimeric peptide (GEP44) targeting both the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2 receptor (Y1R and Y2R) reduced energy intake and body weight (BW) in diet-induced obese (DIO) rats. We hypothesized that GEP44 reduces energy intake and BW primarily through a GLP-1R dependent mechanism. To test this hypothesis, GLP-1R+/+ mice and GLP-1R null (GLP-1R-/-) mice were fed a high fat diet for 4 months to elicit diet-induced obesity prior to undergoing a sequential 3-day vehicle period, 3-day drug treatment (5, 10, 20 or 50 nmol/kg; GEP44 vs the selective GLP-1R agonist, exendin-4) and a 3-day washout. Energy intake, BW, core temperature and activity were measured daily. GEP44 (10, 20 and 50 nmol/kg) reduced BW after 3-day treatment in DIO male GLP-1R+/+ mice by -1.5 ± 0.6, -1.3 ± 0.4 and -1.9 ± 0.4 grams, respectively (P<0.05), with similar effects being observed in female GLP-1R+/+ mice. These effects were absent in male and female DIO GLP-1R-/- mice suggesting that GLP-1R signaling contributes to GEP44-elicited reduction of BW. Further, GEP44 decreased energy intake in both male and female DIO GLP-1R+/+ mice, but GEP44 appeared to produce more consistent effects across multiple doses in males. In GLP-1R-/- mice, the effects of GEP44 on energy intake were only observed in males and not females, suggesting that GEP44 may reduce energy intake, in part, through a GLP-1R independent mechanism in males. In addition, GEP44 reduced core temperature and activity in both male and female GLP-1R+/+ mice suggesting that it may also reduce energy expenditure. Lastly, we show that GEP44 reduced fasting blood glucose in DIO male and female mice through GLP-1R. Together, these findings support the hypothesis that the chimeric peptide, GEP44, reduces energy intake, BW, core temperature, and glucose levels in male and female DIO mice primarily through a GLP-1R dependent mechanism.


Asunto(s)
Peso Corporal , Dieta Alta en Grasa , Ingestión de Energía , Receptor del Péptido 1 Similar al Glucagón , Ratones Obesos , Obesidad , Animales , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Femenino , Masculino , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ratones Noqueados , Ratones Endogámicos C57BL
12.
Trends Hear ; 28: 23312165241266316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39183533

RESUMEN

During continuous speech perception, endogenous neural activity becomes time-locked to acoustic stimulus features, such as the speech amplitude envelope. This speech-brain coupling can be decoded using non-invasive brain imaging techniques, including electroencephalography (EEG). Neural decoding may provide clinical use as an objective measure of stimulus encoding by the brain-for example during cochlear implant listening, wherein the speech signal is severely spectrally degraded. Yet, interplay between acoustic and linguistic factors may lead to top-down modulation of perception, thereby complicating audiological applications. To address this ambiguity, we assess neural decoding of the speech envelope under spectral degradation with EEG in acoustically hearing listeners (n = 38; 18-35 years old) using vocoded speech. We dissociate sensory encoding from higher-order processing by employing intelligible (English) and non-intelligible (Dutch) stimuli, with auditory attention sustained using a repeated-phrase detection task. Subject-specific and group decoders were trained to reconstruct the speech envelope from held-out EEG data, with decoder significance determined via random permutation testing. Whereas speech envelope reconstruction did not vary by spectral resolution, intelligible speech was associated with better decoding accuracy in general. Results were similar across subject-specific and group analyses, with less consistent effects of spectral degradation in group decoding. Permutation tests revealed possible differences in decoder statistical significance by experimental condition. In general, while robust neural decoding was observed at the individual and group level, variability within participants would most likely prevent the clinical use of such a measure to differentiate levels of spectral degradation and intelligibility on an individual basis.


Asunto(s)
Estimulación Acústica , Electroencefalografía , Inteligibilidad del Habla , Percepción del Habla , Humanos , Percepción del Habla/fisiología , Femenino , Masculino , Adolescente , Adulto , Adulto Joven , Acústica del Lenguaje , Encéfalo/fisiología
13.
Cancer Res Commun ; 4(8): 2123-2132, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142659

RESUMEN

Surgical resection for localized hepatocellular carcinoma (HCC) is typically reserved for a minority of patients with favorable tumor features and anatomy. Neoadjuvant immunotherapy can expand the number of patients who are candidates for surgical resection and potentially reduce the chance for recurrence, but its role in HCC not defined. We retrospectively examined the outcomes of patients who underwent surgical resection for HCC at the Johns Hopkins Hospital and compared the clinical outcomes of patients who received neoadjuvant immunotherapy with those who underwent upfront resection. The clinical cohort included a total of 92 patients, 36 of whom received neoadjuvant immune checkpoint inhibitor (ICI)-based treatment. A majority of patients (61.1%) who received neoadjuvant ICI-based therapy were outside of standard resectability criteria and were more likely to have features known to confer risk of disease recurrence, including α-fetoprotein ≥ 400 ng/mL (P = 0.02), tumor diameter ≥ 5 cm (P = 0.001), portal vein invasion (P < 0.001), and multifocality (P < 0.001). Patients who received neoadjuvant immunotherapy had similar rates of margin-negative resection (P = 0.47) and recurrence-free survival (RFS) as those who underwent upfront surgical resection (median RFS 44.8 months compared with 49.3 months, respectively, log-rank P = 0.66). There was a nonsignificant trend toward superior RFS in the subset of patients with a pathologic response (tumor necrosis ≥ 70%) with neoadjuvant immunotherapy. Neoadjuvant ICI-based therapy may allow high-risk patients, including those who are outside traditional resectability criteria, to achieve comparable clinical outcomes with those who undergo upfront resection. SIGNIFICANCE: Surgical resection for localized HCC is typically only reserved for those with solitary tumors without vascular invasion. In this retrospective analysis, we show that neoadjuvant immunotherapy may allow high-risk patients, including those who are outside of standard resection criteria, to undergo successful margin-negative resection and achieve comparable long-term clinical outcomes compared with upfront resection. These findings highlight need for prospective studies on neoadjuvant immunotherapy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/inmunología , Terapia Neoadyuvante/métodos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Inmunoterapia/métodos , Recurrencia Local de Neoplasia/prevención & control , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Supervivencia sin Enfermedad , Hepatectomía
14.
PLoS Biol ; 22(8): e3002741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146240

RESUMEN

Clostridioides difficile is an important human pathogen, for which there are very limited treatment options, primarily the glycopeptide antibiotic vancomycin. In recent years, vancomycin resistance has emerged as a serious problem in several gram-positive pathogens, but high-level resistance has yet to be reported for C. difficile, although it is not known if this is due to constraints upon resistance evolution in this species. Here, we show that resistance to vancomycin can evolve rapidly under ramping selection but is accompanied by fitness costs and pleiotropic trade-offs, including sporulation defects that would be expected to severely impact transmission. We identified 2 distinct pathways to resistance, both of which are predicted to result in changes to the muropeptide terminal D-Ala-D-Ala that is the primary target of vancomycin. One of these pathways involves a previously uncharacterised D,D-carboxypeptidase, expression of which is controlled by a dedicated two-component signal transduction system. Our findings suggest that while C. difficile is capable of evolving high-level vancomycin resistance, this outcome may be limited clinically due to pleiotropic effects on key pathogenicity traits. Moreover, our data identify potential mutational routes to resistance that should be considered in genomic surveillance.


Asunto(s)
Antibacterianos , Clostridioides difficile , Resistencia a la Vancomicina , Vancomicina , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Clostridioides difficile/patogenicidad , Resistencia a la Vancomicina/genética , Vancomicina/farmacología , Antibacterianos/farmacología , Aptitud Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Transducción de Señal , Mutación , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/genética
15.
Nat Commun ; 15(1): 6597, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097586

RESUMEN

Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.


Asunto(s)
Quinasa Activadora de Quinasas Ciclina-Dependientes , Quinasas Ciclina-Dependientes , Fosforilación , Humanos , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , Ciclina H/metabolismo , Ciclina H/química , Ciclina H/genética , Cristalografía por Rayos X , ARN Polimerasa II/metabolismo , ARN Polimerasa II/química , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/genética , Modelos Moleculares , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Dominios Proteicos , Proteínas de Ciclo Celular
16.
Blood ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133932

RESUMEN

The European LeukemiaNet (ELN) genetic risk classifications were developed based on data from younger adults receiving intensive chemotherapy. Emerging analyses from patients receiving less-intensive therapies prompted a proposal for an ELN genetic risk classification specifically for this patient population.

17.
J Hepatol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181211

RESUMEN

BACKGROUND & AIMS: Recent findings reveal the importance of tryptophan-initiated de novo nicotinamide adenine dinucleotide (NAD+) synthesis in the liver, a process previously considered secondary to biosynthesis from nicotinamide. The enzyme α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), primarily expressed in liver and kidney, acts as a modulator of de novo NAD+ synthesis. Boosting NAD+ levels has previously demonstrated remarkable metabolic benefits in mouse models. In this study, we aimed to investigate the therapeutic implications of ACMSD inhibition in the treatment of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH). METHODS: In vitro experiments were conducted in primary rodent hepatocytes, Huh7 human liver carcinoma cells and iPSC-derived human liver organoids (HLOs). C57BL/6J male mice were fed a western-style diet and housed at thermoneutrality to recapitulate key aspects of MASLD/MASH. Pharmacological ACMSD inhibition was given therapeutically, following disease onset. Steatohepatitis HLO models were used to assess the DNA damage responses by ACMSD inhibition in human contexts. RESULTS: Inhibiting ACMSD with a novel specific pharmacological inhibitor promotes de novo NAD+ synthesis and reduces DNA damage ex vivo, in vivo, and in HLO models. In mouse models of MASLD/MASH, de novo NAD+ biosynthesis is suppressed, and transcriptomic DNA damage signatures correlate with disease severity; in humans, Mendelian randomization-based genetic analysis suggests a notable impact of genomic stress on liver disease susceptibility. Therapeutic inhibition of ACMSD in mice increases liver NAD+ and reverses MASLD/MASH, mitigating fibrosis, inflammation, and DNA damage, as were observed in HLO models of steatohepatitis. CONCLUSIONS: Our findings highlight the benefits of ACMSD inhibition to enhance hepatic NAD+ levels and enable genomic protection, underscoring its therapeutic potential in MASLD/MASH. IMPACT AND IMPLICATIONS: Enhancing NAD+ levels has shown remarkable health benefits in mouse models of MASLD/MASH, yet liver-specific NAD+ boosting strategies remain underexplored. Here, we present a novel pharmacological approach to enhance liver NAD+de novo synthesis by inhibiting ACMSD, an enzyme highly expressed in the liver. Inhibiting ACMSD increases NAD+ levels, enhances mitochondrial respiration, and maintains genomic stability in hepatocytes ex vivo and in vivo. These molecular benefits prevent disease progression in both mouse and human liver organoid models of steatohepatitis. Our preclinical study identifies ACMSD as a promising target for MASLD/MASH management and lays the groundwork for developing ACMSD inhibitors as a clinical treatment.

18.
Brain ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167538

RESUMEN

The development and maintenance of chronic pain involves the reorganization of spinal nociceptive circuits. The mechanistic target of rapamycin complex 2 (mTORC2), a central signaling hub that modulates both actin-dependent structural changes and mTORC1-dependent mRNA translation, plays key roles in hippocampal synaptic plasticity and memory formation. However, its function in spinal plasticity and chronic pain is poorly understood. Here we show that pharmacological activation of spinal mTORC2 induces pain hypersensitivity, whereas its inhibition, using downregulation of the mTORC2-defining component Rictor, alleviates both inflammatory and neuropathic pain. Cell-type-specific deletion of Rictor showed that the selective inhibition of mTORC2 in a subset of excitatory neurons impairs spinal synaptic potentiation and alleviates inflammation-induced mechanical and thermal hypersensitivity, and nerve injury-induced heat hyperalgesia. The ablation of mTORC2 in inhibitory interneurons strongly alleviated nerve injury-induced mechanical hypersensitivity. Our findings reveal the role of mTORC2 in chronic pain and highlight its cell-type-specific functions in mediating pain hypersensitivity in response to peripheral inflammation and nerve injury.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39147267

RESUMEN

BACKGROUND: Surgical treatment of Rockwood grade V AC joint injuries remains varied. We hypothesized that the addition of a second suspensory device between the clavicle and coracoid would yield superior biomechanical results over a single device. We also hypothesized that the addition of an internal brace across the AC joint to a suspensory device would yield superior results over the suspensory device in isolation. METHODS: A total of 24 cadaveric shoulders were dissected and randomized to four groups with four different constructs implanted: Group A: Single AC TightRope (Arthrex Inc., Naples, FL, USA) Group B: Double AC TightRope Group C: Single Knotless AC TightRope (Arthrex Inc., Naples, FL, USA) Group D: Single Knotless AC TightRope with AC InternalBrace Ligament Augmentation (Arthrex Inc., Naples, FL, USA) These were then loaded in the Robotic arm (SIMVITRO) where 250 cycles of 50N of force in the superior plane was applied. Dynamic creep, displacement, translation and stiffness were assessed. RESULTS: Testing was successfully completed for all specimens. There were no failures due to fracture or translation of the clavicle greater than 5mm from the starting position. Reduction was maintained with a mean superior displacement of 1.7 mm (± 1.4 mm). The mean peak to peak displacement, superior and posterior translation, dynamic creep and stiffness did not differ significantly between construct groups. CONCLUSION: This study did not demonstrate any significant biomechanical differences between groups in terms of displacement, translation, creep or stiffness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...