Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38398132

RESUMEN

Tumors with a pathogenic BRCA1/2 mutation are homologous recombination (HR)-deficient (HRD) and consequently sensitive to platinum-based chemotherapy and Poly-[ADP-Ribose]-Polymerase inhibitors (PARPi). We hypothesized that functional HR status better reflects real-time HR status than BRCA1/2 mutation status. Therefore, we determined the functional HR status of 53 breast cancer (BC) and 38 ovarian cancer (OC) cell lines by measuring the formation of RAD51 foci after irradiation. Discrepancies between functional HR and BRCA1/2 mutation status were investigated using exome sequencing, methylation and gene expression data from 50 HR-related genes. A pathogenic BRCA1/2 mutation was found in 10/53 (18.9%) of BC and 7/38 (18.4%) of OC cell lines. Among BRCA1/2-mutant cell lines, 14/17 (82.4%) were HR-proficient (HRP), while 1/74 (1.4%) wild-type cell lines was HRD. For most (80%) cell lines, we explained the discrepancy between functional HR and BRCA1/2 mutation status. Importantly, 12/14 (85.7%) BRCA1/2-mutant HRP cell lines were explained by mechanisms directly acting on BRCA1/2. Finally, functional HR status was strongly associated with COSMIC single base substitution signature 3, but not BRCA1/2 mutation status. Thus, the majority of BRCA1/2-mutant cell lines do not represent a suitable model for HRD. Moreover, exclusively determining BRCA1/2 mutation status may not suffice for platinum-based chemotherapy or PARPi patient selection.

2.
Nat Commun ; 12(1): 7000, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853312

RESUMEN

At initiation of X chromosome inactivation (XCI), Xist is monoallelically upregulated from the future inactive X (Xi) chromosome, overcoming repression by its antisense transcript Tsix. Xist recruits various chromatin remodelers, amongst them SPEN, which are involved in silencing of X-linked genes in cis and establishment of the Xi. Here, we show that SPEN plays an important role in initiation of XCI. Spen null female mouse embryonic stem cells (ESCs) are defective in Xist upregulation upon differentiation. We find that Xist-mediated SPEN recruitment to the Xi chromosome happens very early in XCI, and that SPEN-mediated silencing of the Tsix promoter is required for Xist upregulation. Accordingly, failed Xist upregulation in Spen-/- ESCs can be rescued by concomitant removal of Tsix. These findings indicate that SPEN is not only required for the establishment of the Xi, but is also crucial in initiation of the XCI process.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Inactivación del Cromosoma X , Animales , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones , Regiones Promotoras Genéticas , Activación Transcripcional , Transcriptoma , Regulación hacia Arriba
3.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916248

RESUMEN

Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.

4.
Curr Opin Cell Biol ; 46: 54-61, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28236732

RESUMEN

To ensure X-linked gene dosage compensation between females (XX) and males (XY), one X chromosome undergoes X chromosome inactivation (XCI) in female cells. This process is tightly regulated throughout development by many different factors, with Xist as a key regulator, encoding a long non-coding RNA, involved in establishment of several layers of repressive epigenetic modifications. Several recent studies on XCI focusing on identification and characterization of Xist RNA-protein interactors, revealed new factors involved in gene silencing, genome topology and nuclear membrane attachment, amongst others. Also, new insights in higher order chromatin organization have been presented, revealing differences between the topological organization of active and inactive X chromosomes (Xa and Xi), with associated differences in gene expression. Finally, further evidence indicates that the inactive state of the Xi can be (partially) reversed, and that this X chromosome reactivation (XCR) might be associated with disease.


Asunto(s)
Inactivación del Cromosoma X , Animales , Epigénesis Genética , Femenino , Silenciador del Gen , Genes Ligados a X , Humanos , Masculino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Activación Transcripcional , Cromosoma X/química , Cromosoma X/genética , Cromosoma X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...