Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746266

RESUMEN

Adolescence is a period of increased risk taking, including increased alcohol and drug use. Multiple clinical studies report a positive relationship between adolescent alcohol consumption and risk of developing an alcohol use disorder (AUD) in adulthood. However, few preclinical studies have attempted to tease apart the biological contributions of adolescent alcohol exposure, independent of other social, environmental, and stress factors, and studies that have been conducted show mixed results. Here we use several adolescent voluntary consumption of alcohol models, conducted across three institutes and with two rodent species, to investigate the ramifications of adolescent alcohol consumption on adulthood alcohol consumption in controlled, pre-clinical environments. We consistently demonstrate a lack of increase in adulthood alcohol consumption. This work highlights that risks seen in both human datasets and other murine drinking models may be due to unique social and environmental factors - some of which may be unique to humans. HIGHLIGHTS: Adolescent drinking-in-the-dark (DID) binge drinking does not increase adulthood consumption in a DID model or a two bottle choice model in male and female SST-Cre:Ai9 miceAdolescent pair-housed intermittent access consumption of alcohol does not increase adulthood consumption in an identical adulthood model in male and female C57BL/6J miceAdolescent intermittent access to alcohol does not increase adulthood consumption in male and female Wistar ratsThese complementary datasets across murine models and institutions highlight the need to consider human social factors as well as biological factors.

2.
Addict Biol ; 29(3): e13388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38497285

RESUMEN

Protein kinase C epsilon (PKCε) regulates behavioural responses to ethanol and plays a role in anxiety-like behaviour, but knowledge is limited on downstream substrates of PKCε that contribute to these behaviours. We recently identified brain-specific serine/threonine-protein kinase 1 (BRSK1) as a substrate of PKCε. Here, we test the hypothesis that BRSK1 mediates responses to ethanol and anxiety-like behaviours that are also PKCε dependent. We used in vitro kinase assays to further validate BRSK1 as a substrate of PKCε and used Brsk1-/- mice to assess the role of BRSK1 in ethanol- and anxiety-related behaviours and in physiological responses to ethanol. We found that BRSK1 is phosphorylated by PKCε at a residue identified in a chemical genetic screen of PKCε substrates in mouse brain. Like Prkce-/- mice, male and female Brsk1-/- mice were more sensitive than wild-type to the acute sedative-hypnotic effect of alcohol. Unlike Prkce-/- mice, Brsk1-/- mice responded like wild-type to ataxic doses of ethanol. Although in Prkce-/- mice ethanol consumption and reward are reduced in both sexes, they were reduced only in female Brsk1-/- mice. Ex vivo slice electrophysiology revealed that ethanol-induced facilitation of GABA release in the central amygdala was absent in male Brsk1-/- mice similar to findings in male Prkce-/- mice. Collectively, these results indicate that BRSK1 is a target of PKCε that mediates some PKCε-dependent responses to ethanol in a sex-specific manner and plays a role distinct from PKCε in anxiety-like behaviour.


Asunto(s)
Etanol , Proteína Quinasa C-epsilon , Animales , Femenino , Masculino , Ratones , Ansiedad , Encéfalo/metabolismo , Etanol/farmacología , Ratones Endogámicos C57BL , Fenotipo , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Serina , Treonina/genética
3.
Mol Psychiatry ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509197

RESUMEN

Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are often comorbid. Few treatments exist to reduce comorbid PTSD/AUD. Elucidating the mechanisms underlying their comorbidity could reveal new avenues for therapy. Here, we employed a model of comorbid PTSD/AUD, in which rats were subjected to a stressful shock in a familiar context followed by alcohol drinking. We then examined fear overgeneralization and irritability in these rats. Familiar context stress elevated drinking, increased fear overgeneralization, increased alcohol-related aggressive signs, and elevated peripheral stress hormones. We then examined transcripts of stress- and fear-relevant genes in the central amygdala (CeA), a locus that regulates stress-mediated alcohol drinking. Compared with unstressed rats, stressed rats exhibited increases in CeA transcripts for Crh and Fkbp5 and decreases in transcripts for Bdnf and Il18. Levels of Nr3c1 mRNA, which encodes the glucocorticoid receptor, increased in stressed males but decreased in stressed females. Transcripts of Il18 binding protein (Il18bp), Glp-1r, and genes associated with calcitonin gene-related peptide signaling (Calca, Ramp1, Crlr-1, and Iapp) were unaltered. Crh, but not Crhr1, mRNA was increased by stress; thus, we tested whether inhibiting CeA neurons that express corticotropin-releasing factor (CRF) suppress PTSD/AUD-like behaviors. We used Crh-Cre rats that had received a Cre-dependent vector encoding hM4D(Gi), an inhibitory Designer Receptors Exclusively Activated by Designer Drugs. Chemogenetic inhibition of CeA CRF neurons reduced alcohol intake but not fear overgeneralization or irritability-like behaviors. Our findings suggest that CeA CRF modulates PTSD/AUD comorbidity, and inhibiting CRF neural activity is primarily associated with reducing alcohol drinking but not trauma-related behaviors that are associated with PTSD/AUD.

4.
Neurobiol Dis ; 190: 106361, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992784

RESUMEN

The prefrontal cortex is a crucial regulator of alcohol drinking, and dependence, and other behavioral phenotypes associated with AUD. Comprehensive identification of cell-type specific transcriptomic changes in alcohol dependence will improve our understanding of mechanisms underlying the excessive alcohol use associated with alcohol dependence and will refine targets for therapeutic development. We performed single nucleus RNA sequencing (snRNA-seq) and Visium spatial gene expression profiling on the medial prefrontal cortex (mPFC) obtained from C57BL/6 J mice exposed to the two-bottle choice-chronic intermittent ethanol (CIE) vapor exposure (2BC-CIE, defined as dependent group) paradigm which models phenotypes of alcohol dependence including escalation of alcohol drinking. Gene co-expression network analysis and differential expression analysis identified highly dysregulated co-expression networks in multiple cell types. Dysregulated modules and their hub genes suggest novel understudied targets for studying molecular mechanisms contributing to the alcohol dependence state. A subtype of inhibitory neurons was the most alcohol-sensitive cell type and contained a downregulated gene co-expression module; the hub gene for this module is Cpa6, a gene previously identified by GWAS to be associated with excessive alcohol consumption. We identified an astrocytic Gpc5 module significantly upregulated in the alcohol-dependent group. To our knowledge, there are no studies linking Cpa6 and Gpc5 to the alcohol-dependent phenotype. We also identified neuroinflammation related gene expression changes in multiple cell types, specifically enriched in microglia, further implicating neuroinflammation in the escalation of alcohol drinking. Here, we present a comprehensive atlas of cell-type specific alcohol dependence mediated gene expression changes in the mPFC and identify novel cell type-specific targets implicated in alcohol dependence.


Asunto(s)
Alcoholismo , Animales , Ratones , Alcoholismo/genética , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Corteza Prefrontal/metabolismo , Etanol/toxicidad
5.
Mol Psychiatry ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135755

RESUMEN

Large conductance potassium (BK) channels are among the most sensitive molecular targets of ethanol and genetic variations in the channel-forming α subunit have been nominally associated with alcohol use disorders. However, whether the action of ethanol at BK α influences the motivation to drink alcohol remains to be determined. To address this question, we first tested the effect of systemically administered BK channel modulators on voluntary alcohol consumption in C57BL/6J males. Penitrem A (blocker) exerted dose-dependent effects on moderate alcohol intake, while paxilline (blocker) and BMS-204352 (opener) were ineffective. Because pharmacological manipulations are inherently limited by non-specific effects, we then sought to investigate the behavioral relevance of ethanol's direct interaction with BK α by introducing in the mouse genome a point mutation known to render BK channels insensitive to ethanol while preserving their physiological function. The BK α K361N substitution prevented ethanol from reducing spike threshold in medial habenula neurons. However, it did not alter acute responses to ethanol in vivo, including ataxia, sedation, hypothermia, analgesia, and conditioned place preference. Furthermore, the mutation did not have reproducible effects on alcohol consumption in limited, continuous, or intermittent access home cage two-bottle choice paradigms conducted in both males and females. Notably, in contrast to previous observations made in mice missing BK channel auxiliary ß subunits, the BK α K361N substitution had no significant impact on ethanol intake escalation induced by chronic intermittent alcohol vapor inhalation. It also did not affect the metabolic and locomotor consequences of chronic alcohol exposure. Altogether, these data suggest that the direct interaction of ethanol with BK α does not mediate the alcohol-related phenotypes examined here in mice.

6.
Addict Neurosci ; 92023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38152067

RESUMEN

Alcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC). Dependent male C57BL/6J mice were generated using the chronic intermittent ethanol vapor-two bottle choice (CIE-2BC) paradigm. Non-dependent mice had access to water and ethanol bottles but did not receive ethanol vapor. Naïve mice had no ethanol exposure. We used patch-clamp electrophysiology to measure glutamate neurotransmission in layer 2/3 prelimbic mPFC pyramidal neurons. Since AMPAR function can be impacted by subunit composition or plasticity-related proteins, we probed their mPFC expression levels. Dependent mice had higher spontaneous excitatory postsynaptic current (sEPSC) amplitude and kinetics compared to the Naïve/Non-dependent mice. These effects were seen during intoxication and after 3-8 days withdrawal, and were action potential-independent, suggesting direct enhancement of AMPAR function. Surprisingly, 3 days withdrawal decreased expression of genes encoding AMPAR subunits (Gria1/2) and synaptic plasticity proteins (Dlg4 and Grip1) in Dependent mice. Further analysis within the Dependent group revealed a negative correlation between Gria1 mRNA levels and ethanol intake. Collectively, these data establish a role for mPFC AMPAR adaptations in the glutamatergic dysfunction associated with ethanol dependence. Future studies on the underlying AMPAR plasticity mechanisms that promote alcohol reinforcement, seeking, drinking and relapse behavior may help identify new targets for AUD treatment.

7.
Neurobiol Stress ; 26: 100562, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37601537

RESUMEN

Excessive alcohol use disrupts neuroimmune signaling across various cell types, including neurons, microglia, and astrocytes. The present review focuses on recent, albeit limited, evidence of sex differences in biological factors that mediate neuroimmune responses to alcohol and underlying neuroimmune systems that may influence alcohol drinking behaviors. Females are more vulnerable than males to the neurotoxic and negative consequences of chronic alcohol drinking, reflected by elevations of pro-inflammatory cytokines and inflammatory mediators. Differences in cytokine, microglial, astrocytic, genomic, and transcriptomic evidence suggest females are more reactive than males to neuroinflammatory changes after chronic alcohol exposure. The growing body of evidence supports that innate immune factors modulate synaptic transmission, providing a mechanistic framework to examine sex differences across neurocircuitry. Targeting neuroimmune signaling may be a viable strategy for treating AUD, but more research is needed to understand sex-specific differences in alcohol drinking and neuroimmune mechanisms.

8.
Neurobiol Stress ; 25: 100547, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37547774

RESUMEN

Impairments in the function of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced glucocorticoid receptor (GR) activity in the central amygdala (CeA) are critical mechanisms in the pathogenesis of alcohol use disorder (AUD). The GR antagonist mifepristone attenuates craving in AUD patients, alcohol consumption in AUD models, and decreases CeA γ-aminobutyric acid (GABA) transmission in alcohol-dependent rats. Previous studies suggest elevated GR activity in the CeA of male alcohol-preferring Marchigian-Sardinian (msP) rats, but its contribution to heightened CeA GABA transmission driving their characteristic post-dependent phenotype is largely unknown. We determined Nr3c1 (the gene encoding GR) gene transcription in the CeA in male and female msP and Wistar rats using in situ hybridization and studied acute effects of mifepristone (10 µM) and its interaction with ethanol (44 mM) on pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSCs) and electrically evoked inhibitory postsynaptic potentials (eIPSPs) in the CeA using ex vivo slice electrophysiology. Female rats of both genotypes expressed more CeA GRs than males, suggesting a sexually dimorphic GR regulation of CeA activity. Mifepristone reduced sIPSC frequencies (GABA release) and eIPSP amplitudes in msP rats of both sexes, but not in their Wistar counterparts; however, it did not prevent acute ethanol-induced increase in CeA GABA transmission in male rats. In msP rats, GR regulates CeA GABAergic signaling under basal conditions, indicative of intrinsically active GR. Thus, enhanced GR function in the CeA represents a key mechanism contributing to maladaptive behaviors associated with AUD.

9.
Cells ; 12(15)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37566022

RESUMEN

Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share dysregulated neuroimmune-related pathways. Here, we used our established rat model of comorbid post-traumatic stress disorder (PTSD)/AUD to characterize the interleukin 18 (IL-18) system in the central amygdala (CeA). Male and female rats underwent novel (NOV) and familiar (FAM) shock stress, or no stress (unstressed controls; CTL) followed by voluntary alcohol drinking and PTSD-related behaviors, then all received renewed alcohol access prior to the experiments. In situ hybridization revealed that the number of CeA positive cells for Il18 mRNA increased, while for Il18bp decreased in both male and female FAM stressed rats versus CTL. No changes were observed in Il18r1 expression across groups. Ex vivo electrophysiology showed that IL-18 reduced GABAA-mediated miniature inhibitory postsynaptic currents (mIPSCs) frequencies in CTL, suggesting reduced CeA GABA release, regardless of sex. Notably, this presynaptic effect of IL-18 was lost in both NOV and FAM males, while it persisted in NOV and FAM females. IL-18 decreased mIPSC amplitude in CTL female rats, suggesting postsynaptic effects. Overall, our results suggest that stress in rats with alcohol access impacts CeA IL-18-system expression and, in sex-related fashion, IL-18's modulatory function at GABA synapses.


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Trastornos por Estrés Postraumático , Ratas , Masculino , Femenino , Animales , Alcoholismo/complicaciones , Núcleo Amigdalino Central/metabolismo , Interleucina-18/metabolismo , Etanol/farmacología , Consumo de Bebidas Alcohólicas , Ácido gamma-Aminobutírico/metabolismo
10.
Br J Pharmacol ; 180(24): 3130-3145, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37488777

RESUMEN

BACKGROUND AND PURPOSE: The endocannabinoid (eCB) system plays an important homeostatic role in the regulation of stress circuits and has emerged as a therapeutic target to treat stress disorders and alcohol use disorder (AUD). Extensive research has elucidated a role for the eCB anandamide (AEA), but less is known about 2-arachidonoylglycerol (2-AG) mediated signalling. EXPERIMENTAL APPROACH: We pharmacologically enhanced eCB signalling by inhibiting the 2-AG metabolizing enzyme, monoacylglycerol lipase (MAGL), in male and female Marchigian Sardinian alcohol-preferring (msP) rats, a model of innate alcohol preference and stress hypersensitivity, and in control Wistar rats. We tested the acute effect of the selective MAGL inhibitor MJN110 in alleviating symptoms of alcohol drinking, anxiety, irritability and fear. KEY RESULTS: A single systemic administration of MJN110 increased 2-AG levels in the central amygdala, prelimbic and infralimbic cortex but did not acutely alter alcohol drinking. MAGL inhibition reduced aggressive behaviours in female msPs, and increased defensive behaviours in male msPs, during the irritability test. Moreover, in the novelty-induced hypophagia test, MJN110 selectively enhanced palatable food consumption in females, mitigating stress-induced food suppression. Lastly, msP rats showed increased conditioned fear behaviour compared with Wistar rats, and MJN110 reduced context-associated conditioned fear responses, but not cue-probed fear expression, in male msPs. CONCLUSIONS AND IMPLICATIONS: Acute inhibition of MAGL attenuated some stress-related responses in msP rats but not voluntary alcohol drinking. Our results provide new insights into the sex dimorphism documented in stress-induced responses. Sex-specific eCB-based approaches should be considered in the clinical development of therapeutics.


Asunto(s)
Monoacilglicerol Lipasas , Monoglicéridos , Ratas , Masculino , Femenino , Animales , Ratas Wistar , Etanol/farmacología , Endocannabinoides/metabolismo
11.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37192005

RESUMEN

Growing evidence indicates that the glucagon-like peptide-1 (GLP-1) system is involved in the neurobiology of addictive behaviors, and GLP-1 analogues may be used for the treatment of alcohol use disorder (AUD). Here, we examined the effects of semaglutide, a long-acting GLP-1 analogue, on biobehavioral correlates of alcohol use in rodents. A drinking-in-the-dark procedure was used to test the effects of semaglutide on binge-like drinking in male and female mice. We also tested the effects of semaglutide on binge-like and dependence-induced alcohol drinking in male and female rats, as well as acute effects of semaglutide on spontaneous inhibitory postsynaptic currents (sIPSCs) from central amygdala (CeA) and infralimbic cortex (ILC) neurons. Semaglutide dose-dependently reduced binge-like alcohol drinking in mice; a similar effect was observed on the intake of other caloric/noncaloric solutions. Semaglutide also reduced binge-like and dependence-induced alcohol drinking in rats. Semaglutide increased sIPSC frequency in CeA and ILC neurons from alcohol-naive rats, suggesting enhanced GABA release, but had no overall effect on GABA transmission in alcohol-dependent rats. In conclusion, the GLP-1 analogue semaglutide decreased alcohol intake across different drinking models and species and modulated central GABA neurotransmission, providing support for clinical testing of semaglutide as a potentially novel pharmacotherapy for AUD.


Asunto(s)
Alcoholismo , Péptido 1 Similar al Glucagón , Ratas , Ratones , Masculino , Femenino , Animales , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/uso terapéutico
12.
Br J Pharmacol ; 180(18): 2377-2392, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37050867

RESUMEN

BACKGROUND AND PURPOSE: Chronic pain is considered a key factor contributing to alcohol use disorder (AUD). The mechanisms responsible for chronic pain associated with chronic alcohol consumption are unknown. We evaluated the development of chronic pain in a mouse model of alcohol dependence and investigate the role of neuroinflammation. EXPERIMENTAL APPROACH: The chronic-intermittent ethanol two-bottle choice CIE-2BC paradigm generates three groups: alcohol-dependent with escalating alcohol intake, nondependent (moderate drinking) and alcohol-naïve control male and female mice. We measured mechanical allodynia during withdrawal and after the last voluntary drinking. Immunoblotting was used to evaluate the protein levels of IBA-1, CSFR, IL-6, p38 and ERK2/1 in spinal cord tissue of dependent and non-dependent animals. KEY RESULTS: We found significant escalation of drinking in the dependent group in male and female compared with the non-dependent group. The dependent group developed mechanical allodynia during 72 h of withdrawal, which was completely reversed after voluntary drinking. We observed an increased pain hypersensitivity compared with the naïve in 50% of non-dependent group. Increased IBA-1 and CSFR expression was observed in spinal cord tissue of both hypersensitivity-abstinence related and neuropathy-alcohol mice, and increased IL-6 expression and ERK1/2 activation in mice with hypersensitivity-related to abstinence, but not in mice with alcohol-evoked neuropathic pain. CONCLUSIONS AND IMPLICATIONS: The CIE-2BC model induces two distinct pain conditions specific to the type of ethanol exposure: abstinence-related hypersensitivity in dependent mice and alcohol-evoked neuropathic pain in about a half of the non-dependent mice.


Asunto(s)
Neuralgia , Enfermedades Neuroinflamatorias , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Etanol/toxicidad , Modelos Animales de Enfermedad , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Dolor Crónico/inducido químicamente , Dolor Crónico/metabolismo , Ratones Endogámicos C57BL , Masculino , Femenino , Animales , Ratones , Conducta Animal
13.
Artículo en Inglés | MEDLINE | ID: mdl-36765015

RESUMEN

Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. The present chapter is an update of our previous Lovinger and Roberto (Curr Top Behav Neurosci 13:31-86, 2013) chapter and reviews the literature describing these acute and chronic synaptic effects of EtOH with a focus on adult animals and their relevance for synaptic transmission, plasticity, and behavior.

14.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36656645

RESUMEN

Treatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach. We prioritized a newer PDE4 inhibitor, apremilast, as ideal for repurposing (i.e., FDA approved for psoriasis, low incidence of adverse events, excellent safety profile) and tested it using multiple animal strains and models, as well as in a human phase IIa study. We found that apremilast reduced binge-like alcohol intake and behavioral measures of alcohol motivation in mouse models of genetic risk for drinking to intoxication. Apremilast also reduced excessive alcohol drinking in models of stress-facilitated drinking and alcohol dependence. Using site-directed drug infusions and electrophysiology, we uncovered that apremilast may act to lessen drinking in mice by increasing neural activity in the nucleus accumbens, a key brain region in the regulation of alcohol intake. Importantly, apremilast (90 mg/d) reduced excessive drinking in non-treatment-seeking individuals with AUD in a double-blind, placebo-controlled study. These results demonstrate that apremilast suppresses excessive alcohol drinking across the spectrum of AUD severity.


Asunto(s)
Alcoholismo , Inhibidores de Fosfodiesterasa 4 , Psoriasis , Humanos , Ratones , Animales , Talidomida/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Psoriasis/tratamiento farmacológico , Etanol , Consumo de Bebidas Alcohólicas/genética
15.
Br J Pharmacol ; 180(11): 1500-1515, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36537731

RESUMEN

BACKGROUND AND PURPOSE: A major problem managing alcohol use disorder is the high vulnerability to relapse, even after long periods of abstinence. Chronic alcohol use dysregulates stress responsivity, rendering this system hyporesponsive and making individuals vulnerable to relapse. Orexin (hypocretin) plays a role in diverse physiological processes, including stress. Orexin neurons in the hypothalamus, project to the infralimbic cortex. This study asked does infralimbic cortex orexin transmission play a significant role in stress-induced reinstatement of alcohol-seeking behaviour in alcohol-dependent rats. EXPERIMENTAL APPROACH: Male and female rats were trained to self-administer 10% alcohol (3 weeks) and then made dependent via chronic intermittent alcohol vapour exposure. Following extinction (5 days·week-1 at 8 h abstinence for 10 sessions), rats received an intra- infralimbic cortex microinfusion of the OX1/2 antagonist TCS 1102 (15 µg/0.5 µl per side) and then tested for footshock stress-induced reinstatement of alcohol seeking. In a separate cohort, orexin regulation of infralimbic cortex neuronal activity at the time of reinstatement was investigated using ex vivo electrophysiology. KEY RESULTS: TCS 1102 prevented reinstatement in dependent animals only. Moreover, Hcrtr mRNA expression in the hypothalamus and Hcrtr1/2 in the infralimbic cortex increased in alcohol-dependent animals at the time of testing. Dependence dampened basal orexin/OX receptor influence over infralimbic cortex GABAergic synapses (using TCS 1102) allow for greater stimulated orexin effects. CONCLUSION AND IMPLICATIONS: Infralimbic cortex transmission is implicate in stress-induced reinstatement of alcohol-seeking behaviour in subjects with a history of alcohol dependence and show maladaptive recruitment of infralimbic cortex transmission by alcohol dependence.


Asunto(s)
Alcoholismo , Femenino , Ratas , Masculino , Animales , Receptores de Orexina/metabolismo , Orexinas , Etanol/farmacología , Consumo de Bebidas Alcohólicas , Autoadministración , Extinción Psicológica , Comportamiento de Búsqueda de Drogas
16.
Neuropsychopharmacology ; 48(8): 1144-1154, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36396784

RESUMEN

Post-traumatic stress disorder (PTSD) leads to enhanced alcohol drinking and development of alcohol use disorder (AUD). Identifying shared neural mechanisms might help discover new therapies for PTSD/AUD. Here, we employed a rat model of comorbid PTSD/AUD to evaluate compounds that inhibit FK506-binding protein 51 (FKBP5), a co-chaperone modulator of glucocorticoid receptors implicated in stress-related disorders. Male and female rats received a familiar avoidance-based shock stress followed by voluntary alcohol drinking. We then assessed trauma-related behaviors through sleep bout cycles, hyperarousal, fear overgeneralization, and irritability. To evaluate the role of stress and alcohol history on the sensitivity to FKBP5 inhibitors, in two separate studies, we administered two FKBP5 inhibitors, benztropine (Study 1) or SAFit2 (Study 2). FKBP5 inhibitors were administered on the last alcohol drinking session and prior to each trauma-related behavioral assessment. We also measured plasma corticosterone to assess the actions of FKBP5 inhibitors after familiar shock stress and alcohol drinking. Benztropine reduced alcohol preference in stressed males and females, while aggressive bouts were reduced in benztropine-treated stressed females. During hyperarousal, benztropine reduced several startle response outcomes across stressed males and females. Corticosterone was reduced in benztropine-treated stressed males. The selective FKBP5 inhibitor, SAFit2, reduced alcohol drinking in stressed males but not females, with no differences in irritability. Importantly, SAFit2 decreased fear overgeneralization in stressed males and females. SAFit2 also reduced corticosterone across stressed males and females. Neither FKBP5 inhibitor changed sleep bout structure. These findings indicate that FKBP5 inhibitors modulate stress-related alcohol drinking and partially modulate trauma-related behaviors. This work supports the hypothesis that targeting FKBP5 may alleviate PTSD/AUD comorbidity.


Asunto(s)
Alcoholismo , Trastornos por Estrés Postraumático , Masculino , Ratas , Animales , Alcoholismo/tratamiento farmacológico , Alcoholismo/epidemiología , Trastornos por Estrés Postraumático/metabolismo , Corticosterona , Proteínas de Unión a Tacrolimus/metabolismo , Benzotropina/uso terapéutico , Consumo de Bebidas Alcohólicas , Comorbilidad
17.
Am J Drug Alcohol Abuse ; 49(3): 321-332, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36206520

RESUMEN

Background: Although alcohol and nicotine are often used together, the biological consequences of these substances are not well understood. Identifying shared targets will inform cessation pharmacotherapies and provide a deeper understanding of how co-use of alcohol and nicotine impacts health, including biomarkers of stress and inflammation.Objective: We examined the effects of nicotine exposure and withdrawal on alcohol self-administration (SA), stress and inflammatory biomarkers, and a G-protein coupled receptor subunit (Gß) in brain areas associated with drug use.Methods: Male rats were trained to SA alcohol and then received a nicotine pump (n = 7-8 per group). We assessed alcohol intake for 12 days during nicotine exposure and then following pump removal to elicit withdrawal. After the behavioral studies, we assessed plasma leptin, corticosterone, and interleukin-1ß (IL-1ß), and Gß protein expression in the amygdala, nucleus accumbens (NAc), and prefrontal cortex (PFC).Results: Nicotine exposure or withdrawal did not alter alcohol intake (p > .05). Alcohol and nicotine withdrawal elevated corticosterone levels (p = .015) and decreased Gß levels in the PFC (p = .004). In the absence of nicotine, alcohol SA suppressed IL-1ß levels (p = .039). Chronic exposure to nicotine or withdrawal during alcohol SA did not alter leptin levels or Gß expression in the amygdala or NAc (p's > .05).Conclusions: The combination of alcohol SA and nicotine withdrawal produced a persistent increase in stress biomarkers and a suppression in Gß expression in the PFC, providing an important first step toward understanding the common biological mechanisms of alcohol/nicotine misuse.


Asunto(s)
Nicotina , Síndrome de Abstinencia a Sustancias , Ratas , Masculino , Animales , Nicotina/efectos adversos , Leptina/metabolismo , Leptina/farmacología , Leptina/uso terapéutico , Corticosterona/metabolismo , Corticosterona/farmacología , Corticosterona/uso terapéutico , Ratas Wistar , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Corteza Prefrontal , Etanol/efectos adversos
18.
SLAS Discov ; 27(8): 448-459, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36210051

RESUMEN

BACKGROUND: Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS: We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS: We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION: These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.


Asunto(s)
Hormona Liberadora de Corticotropina , Proyectos de Investigación , Humanos , Animales , Ratones , Células HEK293
20.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887190

RESUMEN

Alcohol use disorder (AUD) is a chronically relapsing disease characterized by loss of control in seeking and consuming alcohol (ethanol) driven by the recruitment of brain stress systems. However, AUD differs among the sexes: men are more likely to develop AUD, but women progress from casual to binge drinking and heavy alcohol use more quickly. The central amygdala (CeA) is a hub of stress and anxiety, with corticotropin-releasing factor (CRF)-CRF1 receptor and Gamma-Aminobutyric Acid (GABA)-ergic signaling dysregulation occurring in alcohol-dependent male rodents. However, we recently showed that GABAergic synapses in female rats are less sensitive to the acute effects of ethanol. Here, we used patch-clamp electrophysiology to examine the effects of alcohol dependence on the CRF modulation of rat CeA GABAergic transmission of both sexes. We found that GABAergic synapses of naïve female rats were unresponsive to CRF application compared to males, although alcohol dependence induced a similar CRF responsivity in both sexes. In situ hybridization revealed that females had fewer CeA neurons containing mRNA for the CRF1 receptor (Crhr1) than males, but in dependence, the percentage of Crhr1-expressing neurons in females increased, unlike in males. Overall, our data provide evidence for sexually dimorphic CeA CRF system effects on GABAergic synapses in dependence.


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Animales , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Etanol/farmacología , Femenino , Humanos , Masculino , Ratas , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA