Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Mol Plant Microbe Interact ; 37(5): 427-431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38377039

RESUMEN

Callose, a ß-(1,3)-d-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD or, conversely, by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing likely intercellular trafficking activity during plant immunity. Despite the popularity of this metric, there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying plasmodesmal callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescence microscopy to measure callose deposition in fixed tissue. Manual or semiautomated workflows for image analysis were also compared and found to produce similar results, although the semiautomated workflow produced a wider distribution of data points. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Glucanos , Nicotiana , Enfermedades de las Plantas , Hojas de la Planta , Plasmodesmos , Glucanos/metabolismo , Nicotiana/metabolismo , Plasmodesmos/metabolismo , Hojas de la Planta/metabolismo , Enfermedades de las Plantas/microbiología , Compuestos de Anilina/metabolismo , Inmunidad de la Planta , Coloración y Etiquetado/métodos
3.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873219

RESUMEN

Callose, a beta-(1,3)-D-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD, or conversely by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during innate immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing the intercellular trafficking activity during plant immunity. Despite the popularity of this metric there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying PD callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescent microscopy to measure callose deposition in fixed tissue. Manual or semi-automated workflows for image analysis were also compared and found to produce similar results although the semi-automated workflow produced a wider distribution of data points.

4.
Sleep Health ; 9(5): 596-610, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573208

RESUMEN

GOAL AND AIMS: Commonly used actigraphy algorithms are designed to operate within a known in-bed interval. However, in free-living scenarios this interval is often unknown. We trained and evaluated a sleep/wake classifier that operates on actigraphy over ∼24-hour intervals, without knowledge of in-bed timing. FOCUS TECHNOLOGY: Actigraphy counts from ActiWatch Spectrum devices. REFERENCE TECHNOLOGY: Sleep staging derived from polysomnography, supplemented by observation of wakefulness outside of the staged interval. Classifications from the Oakley actigraphy algorithm were additionally used as performance reference. SAMPLE: Adults, sleeping in either a home or laboratory environment. DESIGN: Machine learning was used to train and evaluate a sleep/wake classifier in a supervised learning paradigm. The classifier is a temporal convolutional network, a form of deep neural network. CORE ANALYTICS: Performance was evaluated across ∼24 hours, and additionally restricted to only in-bed intervals, both in terms of epoch-by-epoch performance, and the discrepancy of summary statistics within the intervals. ADDITIONAL ANALYTICS AND EXPLORATORY ANALYSES: Performance of the trained model applied to the Multi-Ethnic Study of Atherosclerosis dataset. CORE OUTCOMES: Over ∼24 hours, the temporal convolutional network classifier produced the same or better performance as the Oakley classifier on all measures tested. When restricting analysis to the in-bed interval, the temporal convolutional network remained favorable on several metrics. IMPORTANT SUPPLEMENTAL OUTCOMES: Performance decreased on the Multi-Ethnic Study of Atherosclerosis dataset, especially when restricting analysis to the in-bed interval. CORE CONCLUSION: A classifier using data labeled over ∼24-hour intervals allows for the continuous classification of sleep/wake without knowledge of in-bed intervals. Further development should focus on improving generalization performance.


Asunto(s)
Actigrafía , Aterosclerosis , Adulto , Humanos , Sueño , Polisomnografía , Descanso
5.
PNAS Nexus ; 2(7): pgad216, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37469928

RESUMEN

Enhancing crop yields is a major challenge because of an increasing human population, climate change, and reduction in arable land. Here, we demonstrate that long-lasting growth enhancement and increased stress tolerance occur by pretreatment of dark grown Arabidopsis seedlings with ethylene before transitioning into light. Plants treated this way had longer primary roots, more and longer lateral roots, and larger aerial tissue and were more tolerant to high temperature, salt, and recovery from hypoxia stress. We attributed the increase in plant growth and stress tolerance to ethylene-induced photosynthetic-derived sugars because ethylene pretreatment caused a 23% increase in carbon assimilation and increased the levels of glucose (266%), sucrose/trehalose (446%), and starch (87%). Metabolomic and transcriptomic analyses several days posttreatment showed a significant increase in metabolic processes and gene transcripts implicated in cell division, photosynthesis, and carbohydrate metabolism. Because of this large effect on metabolism, we term this "ethylene-mediated metabolic priming." Reducing photosynthesis with inhibitors or mutants prevented the growth enhancement, but this was partially rescued by exogenous sucrose, implicating sugars in this growth phenomenon. Additionally, ethylene pretreatment increased the levels of CINV1 and CINV2 encoding invertases that hydrolyze sucrose, and cinv1;cinv2 mutants did not respond to ethylene pretreatment with increased growth indicating increased sucrose breakdown is critical for this trait. A model is proposed where ethylene-mediated metabolic priming causes long-term increases in photosynthesis and carbohydrate utilization to increase growth. These responses may be part of the natural development of seedlings as they navigate through the soil to emerge into light.

6.
Contemp Clin Trials ; 132: 107275, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37380020

RESUMEN

Aging populations are at increased risk of sleep deficiencies (e.g., insomnia) that are associated with a variety of chronic health risks, including Alzheimer's disease and related dementias (ADRD). Insomnia medications carry additional risk, including increased drowsiness and falls, as well as polypharmacy risks. The recommended first-line treatment for insomnia is cognitive behavioral therapy for insomnia (CBTi), but access is limited. Telehealth is one way to increase access, particularly for older adults, but to date telehealth has been typically limited to simple videoconferencing portals. While these portals have been shown to be non-inferior to in-person treatment, it is plausible that telehealth could be significantly improved. This work describes a protocol designed to evaluate whether a clinician-patient dashboard inclusive of several user-friendly features (e.g., patterns of sleep data from ambulatory devices, guided relaxation resources, and reminders to complete in-home CBTi practice) could improve CBTi outcomes for middle- to older-aged adults (N = 100). Participants were randomly assigned to one of three telehealth interventions delivered through 6-weekly sessions: (1) CBTi augmented with a clinician-patient dashboard, smartphone application, and integrated smart devices; (2) standard CBTi (i.e., active comparator); or (3) sleep hygiene education (i.e., active control). All participants were assessed at screening, pre-study evaluation, baseline, throughout treatment, and at 1-week post-treatment. The primary outcome is the Insomnia Severity Index. Secondary and exploratory outcomes span sleep diary, actiwatch and Apple watch assessed sleep parameters (e.g., efficiency, duration, timing, variability), psychosocial correlates (e.g., fatigue, depression, stress), cognitive performance, treatment adherence, and neurodegenerative and systemic inflammatory biomarkers.


Asunto(s)
Disfunción Cognitiva , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Adulto , Persona de Mediana Edad , Anciano , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Resultado del Tratamiento , Sueño , Cognición , Disfunción Cognitiva/terapia
7.
Plant Physiol ; 187(4): 2262-2278, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34890456

RESUMEN

Under anaerobic stress, Arabidopsis thaliana induces the expression of a collection of core hypoxia genes that encode proteins for an adaptive response. Among these genes is NIP2;1, which encodes a member of the "Nodulin 26-like Intrinsic Protein" (NIP) subgroup of the aquaporin superfamily of membrane channel proteins. NIP2;1 expression is limited to the "anoxia core" region of the root stele under normal growth conditions, but shows substantial induction (up to 1,000-fold by 2-4 h of hypoxia) by low oxygen stress, and accumulation in all root tissues. During hypoxia, NIP2;1-GFP accumulates predominantly on the plasma membrane by 2 h, is distributed between the plasma and internal membranes during sustained hypoxia, and remains elevated in root tissues through 4 h of reoxygenation recovery. In response to hypoxia challenge, T-DNA insertion mutant nip2;1 plants exhibit elevated lactic acid within root tissues, reduced efflux of lactic acid, and reduced acidification of the external medium compared to wild-type plants. Previous biochemical evidence demonstrates that NIP2;1 has lactic acid channel activity, and our work supports the hypothesis that NIP2;1 prevents lactic acid toxicity by facilitating release of cellular lactic acid from the cytosol to the apoplast, supporting eventual efflux to the rhizosphere. In evidence, nip2;1 plants demonstrate poorer survival during argon-induced hypoxia stress. Expressions of the ethanolic fermentation transcript Alcohol Dehydrogenase1 and the core hypoxia-induced transcript Alanine Aminotransferase1 are elevated in nip2;1, and expression of the Glycolate Oxidase3 transcript is reduced, suggesting NIP2;1 lactic acid efflux regulates other pyruvate and lactate metabolism pathways.


Asunto(s)
Adaptación Fisiológica/genética , Acuaporinas/genética , Acuaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hipoxia/metabolismo , Ácido Láctico/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hipoxia/genética , Plantas Modificadas Genéticamente
8.
Front Plant Sci ; 12: 722940, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567037

RESUMEN

During the energy crisis associated with submergence stress, plants restrict mRNA translation and rapidly accumulate stress granules that act as storage hubs for arrested mRNA complexes. One of the proteins associated with hypoxia-induced stress granules in Arabidopsis thaliana is the calcium-sensor protein CALMODULIN-LIKE 38 (CML38). Here, we show that SUPPRESSOR OF GENE SILENCING 3 (SGS3) is a CML38-binding protein, and that SGS3 and CML38 co-localize within hypoxia-induced RNA stress granule-like structures. Hypoxia-induced SGS3 granules are subject to turnover by autophagy, and this requires both CML38 as well as the AAA+-ATPase CELL DIVISION CYCLE 48A (CDC48A). CML38 also interacts directly with CDC48A, and CML38 recruits CDC48A to CML38 granules in planta. Together, this work demonstrates that SGS3 associates with stress granule-like structures during hypoxia stress that are subject to degradation by CML38 and CDC48-dependent autophagy. Further, the work identifies direct regulatory targets for the hypoxia calcium-sensor CML38, and suggest that CML38 association with stress granules and associated regulation of autophagy may be part of the RNA regulatory program during hypoxia stress.

9.
Psychophysiology ; 58(6): e13803, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33709470

RESUMEN

Relatively little is known about the relation between subthreshold error corrections and post-error behavioral compensations. The present study utilized lateralized beta power, which has been shown to index response preparation, to examine subthreshold error corrections in a task known to produce response conflict, the Simon task. We found that even when an overt correction is not made, greater activation of the corrective response, indexed by beta suppression ipsilateral to the initial responding hand, predicted post-error speeding, and enhanced post-error accuracy at the single-trial level. This provides support for the notion that response conflict associated with errors can be adaptive, and suggests that subthreshold corrections should be taken into account to fully understand error-monitoring processes. Furthermore, we expand on previous findings that demonstrate that post-error slowing and post-error accuracy can be dissociated, as well as findings that suggest that frontal midline theta oscillations and the error-related negativity (ERN) are dissociable neurocognitive processes.


Asunto(s)
Conducta de Elección/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Análisis y Desempeño de Tareas , Ritmo Teta/fisiología , Adulto , Conflicto Psicológico , Electroencefalografía , Femenino , Humanos , Masculino , Adulto Joven
10.
Nat Sci Sleep ; 12: 411-429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765139

RESUMEN

PURPOSE: In non-rapid eye movement (NREM) stage 3 sleep (N3), phase-locked pink noise auditory stimulation can amplify slow oscillatory activity (0.5-1 Hz). Open-loop pink noise auditory stimulation can amplify slow oscillatory and delta frequency activity (0.5-4 Hz). We assessed the ability of pink noise and other sounds to elicit delta power, slow oscillatory power, and N3 sleep. PARTICIPANTS AND METHODS: Participants (n = 8) underwent four consecutive inpatient nights in a within-participants design, starting with a habituation night. A registered polysomnographic technologist live-scored sleep stage and administered stimuli on randomized counterbalanced Enhancing and Disruptive nights, with a preceding Habituation night (night 1) and an intervening Sham night (night 3). A variety of non-phase-locked pink noise stimuli were used on Enhancing night during NREM; on Disruptive night, environmental sounds were used throughout sleep to induce frequent auditory-evoked arousals. RESULTS: Total sleep time did not differ between conditions. Percentage of N3 was higher in the Enhancing condition, and lower in the Disruptive condition, versus Sham. Standard 0.8 Hz pink noise elicited low-frequency power more effectively than other pink noise, but was not the most effective stimulus. Both pink noise on the "Enhancing" night and sounds intended to Disrupt sleep administered on the "Disruptive" night increased momentary delta and slow-wave activity (ie, during stimulation versus the immediate pre-stimulation period). Disruptive auditory stimulation degraded sleep with frequent arousals and increased next-day vigilance lapses versus Sham despite preserved sleep duration and momentary increases in delta and slow-wave activity. CONCLUSION: These findings emphasize sound features of interest in ecologically valid, translational auditory intervention to increase restorative sleep. Preserving sleep continuity should be a primary consideration if auditory stimulation is used to enhance slow-wave activity.

11.
Cogn Affect Behav Neurosci ; 20(3): 636-647, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32303991

RESUMEN

The present study investigated the neural dynamics of error processing in both the time and frequency domains, as well as associated behavioral phenomena, at the single-trial level. We used a technique that enabled us to separately investigate the evoked and induced aspects of the EEG signal (Cohen & Donner, 2013, Journal of Neurophysiology, 110[12], 2752-2763). We found that at the single-trial level, while the (evoked) error-related negativity (ERN) predicted only post-error slowing (PES)-and only when errors occurred on incongruent trials-induced frontal midline theta power served as a robust predictor of both PES and post-error accuracy (PEA) regardless of stimulus congruency. Mediation models of both electrophysiological indices demonstrated that although the relationship between theta and PEA was mediated by PES, there was not a relationship between the ERN and PEA. Our data suggest that although the ERN and frontal midline theta index functionally related underlying cognitive processes, they are not simply the same process manifested in different domains. In addition, our findings are consistent with the adaptive theory of post-error slowing, as PES was positively associated with post-error accuracy at the single-trial level. More generally, our study provides additional support for the inclusion of a time-frequency approach to better understand the role of medial frontal cortex in action monitoring.


Asunto(s)
Potenciales Evocados/fisiología , Función Ejecutiva/fisiología , Lóbulo Frontal/fisiología , Desempeño Psicomotor/fisiología , Ritmo Teta/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
12.
Sleep ; 43(7)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32215550

RESUMEN

STUDY OBJECTIVES: Multisensor wearable consumer devices allowing the collection of multiple data sources, such as heart rate and motion, for the evaluation of sleep in the home environment, are increasingly ubiquitous. However, the validity of such devices for sleep assessment has not been directly compared to alternatives such as wrist actigraphy or polysomnography (PSG). METHODS: Eight participants each completed four nights in a sleep laboratory, equipped with PSG and several wearable devices. Registered polysomnographic technologist-scored PSG served as ground truth for sleep-wake state. Wearable devices providing sleep-wake classification data were compared to PSG at both an epoch-by-epoch and night level. Data from multisensor wearables (Apple Watch and Oura Ring) were compared to data available from electrocardiography and a triaxial wrist actigraph to evaluate the quality and utility of heart rate and motion data. Machine learning methods were used to train and test sleep-wake classifiers, using data from consumer wearables. The quality of classifications derived from devices was compared. RESULTS: For epoch-by-epoch sleep-wake performance, research devices ranged in d' between 1.771 and 1.874, with sensitivity between 0.912 and 0.982, and specificity between 0.366 and 0.647. Data from multisensor wearables were strongly correlated at an epoch-by-epoch level with reference data sources. Classifiers developed from the multisensor wearable data ranged in d' between 1.827 and 2.347, with sensitivity between 0.883 and 0.977, and specificity between 0.407 and 0.821. CONCLUSIONS: Data from multisensor consumer wearables are strongly correlated with reference devices at the epoch level and can be used to develop epoch-by-epoch models of sleep-wake rivaling existing research devices.


Asunto(s)
Actigrafía , Dispositivos Electrónicos Vestibles , Frecuencia Cardíaca , Humanos , Polisomnografía , Reproducibilidad de los Resultados , Sueño , Muñeca
13.
Proteins ; 88(1): 152-165, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31294888

RESUMEN

Water and ligand binding play critical roles in the structure and function of proteins, yet their binding sites and significance are difficult to predict a priori. Multiple solvent crystal structures (MSCS) is a method where several X-ray crystal structures are solved, each in a unique solvent environment, with organic molecules that serve as probes of the protein surface for sites evolved to bind ligands, while the first hydration shell is essentially maintained. When superimposed, these structures contain a vast amount of information regarding hot spots of protein-protein or protein-ligand interactions, as well as conserved water-binding sites retained with the change in solvent properties. Optimized mining of this information requires reliable structural data and a consistent, objective analysis tool. Detection of related solvent positions (DRoP) was developed to automatically organize and rank the water or small organic molecule binding sites within a given set of structures. It is a flexible tool that can also be used in conserved water analysis given multiple structures of any protein independent of the MSCS method. The DRoP output is an HTML format list of the solvent sites ordered by conservation rank in its population within the set of structures, along with renumbered and recolored PDB files for visualization and facile analysis. Here, we present a previously unpublished set of MSCS structures of bovine pancreatic ribonuclease A (RNase A) and use it together with published structures to illustrate the capabilities of DRoP.


Asunto(s)
Proteínas/química , Programas Informáticos , Solventes/química , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Bases de Datos de Proteínas , Humanos , Ligandos , Modelos Moleculares , Compuestos Orgánicos/química , Unión Proteica , Conformación Proteica , Ribonucleasa Pancreática/química , Agua/química
14.
Plant J ; 102(1): 18-33, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31710151

RESUMEN

Picloram is an auxinic herbicide that is widely used for controlling broad leaf weeds. However, its mechanism of transport into plants is poorly understood. In a genetic screen for picloram resistance, we identified three Arabidopsis mutant alleles of PIC30 (PICLORAM RESISTANT30) that are specifically resistant to picolinates, but not to other auxins. PIC30 is a previously uncharacterized gene that encodes a major facilitator superfamily (MFS) transporter. Similar to most members of MFS, PIC30 contains 12 putative transmembrane domains, and PIC30-GFP fusion protein selectively localizes to the plasma membrane. In planta transport assays demonstrate that PIC30 specifically transports picloram, but not indole-3-acetic acid (IAA). Functional analysis of Xenopus laevis oocytes injected with PIC30 cRNA demonstrated PIC30 mediated transport of picloram and several anions, including nitrate and chloride. Consistent with these roles of PIC30, three allelic pic30 mutants are selectively insensitive to picolinate herbicides, while pic30-3 is also defective in chlorate (analogue of nitrate) transport and also shows reduced uptake of 15NO3- . Overexpression of PIC30 fully complements both picloram and chlorate insensitive phenotypes of pic30-3. Despite the continued use of picloram as an herbicide, a transporter for picloram was not known until now. This work provides insight into the mechanisms of plant resistance to picolinate herbicides and also shed light on the possible endogenous function of PIC30 protein.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Herbicidas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácidos Picolínicos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Cloratos/metabolismo , Resistencia a los Herbicidas/genética , Proteínas de Transporte de Membrana/genética , Mutación , Nitratos/metabolismo
15.
Front Hum Neurosci ; 13: 109, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30983982

RESUMEN

As semiautonomous driving systems are becoming prevalent in late model vehicles, it is important to understand how such systems affect driver attention. This study investigated whether measures from low-cost devices monitoring peripheral physiological state were comparable to standard EEG in predicting lapses in attention to system failures. Twenty-five participants were equipped with a low-fidelity eye-tracker and heart rate monitor and with a high-fidelity NuAmps 32-channel quick-gel EEG system and asked to detect the presence of potential system failure while engaged in a fully autonomous lane changing driving task. To encourage participant attention to the road and to assess engagement in the lane changing task, participants were required to: (a) answer questions about that task; and (b) keep a running count of the type and number of billboards presented throughout the driving task. Linear mixed effects analyses were conducted to model the latency of responses reaction time (RT) to automation signals using the physiological metrics and time period. Alpha-band activity at the midline parietal region in conjunction with heart rate variability (HRV) was important in modeling RT over time. Results suggest that current low-fidelity technologies are not sensitive enough by themselves to reliably model RT to critical signals. However, that HRV interacted with EEG to significantly model RT points to the importance of further developing heart rate metrics for use in environments where it is not practical to use EEG.

16.
Plant Physiol ; 178(3): 1269-1283, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30266747

RESUMEN

Boron is an essential plant micronutrient that plays a structural role in the rhamnogalacturonan II component of the pectic cell wall. To prevent boron deficiency under limiting conditions, its uptake, distribution, and homeostasis are mediated by boric acid transporters and channel proteins. Among the membrane channels that facilitate boric acid uptake are the type II nodulin intrinsic protein (NIP) subfamily of aquaporin-like proteins. Arabidopsis (Arabidopsis thaliana) possesses three NIP II genes (NIP5;1, NIP6;1, and NIP7;1) that show distinct tissue expression profiles (predominantly expressed in roots, stem nodes, and developing flowers, respectively). Orthologs of each are represented in all dicots. Here, we show that purified and reconstituted NIP7;1 is a boric acid facilitator. By using native promoter-reporter fusions, we show that NIP7;1 is expressed predominantly in anthers of young flowers in a narrow developmental window, floral stages 9 and 10, with protein accumulation solely within tapetum cells, where it is localized to the plasma membrane. Under limiting boric acid conditions, loss-of-function T-DNA mutants (nip7;1-1 and nip7;1-2) show reduced fertility, including shorter siliques and an increase in aborted seeds, compared with the wild type. Under these conditions, nip7;1 mutant pollen grains show morphological defects, increased aggregation, defective exine cell wall formation, reduced germination frequency, and decreased viability. During stages 9 and 10, the tapetum is essential for supplying materials to the pollen microspore cell wall. We propose that NIP7;1 serves as a gated boric acid channel in developing anthers that aids in the uptake of this critical micronutrient by tapetal cells.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Bóricos/metabolismo , Gametogénesis en la Planta/genética , Polen/genética , Acuaporinas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Boro/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutación , Filogenia , Polen/crecimiento & desarrollo , Polen/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión
17.
Neuroimage ; 183: 112-120, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30096369

RESUMEN

Empirical research demonstrates that when the time following error commission is constrained, subsequent sensory processing can be impaired (Buzzell et al., 2017). This reduction in sensory processing is presumably due to a bottleneck for cognitive resources produced by an overlap between error processing and subsequent stimulus processing. This finding suggests that the system dedicated to improving task performance can actually sometimes be the source of performance failures. Although this finding established that data-limited errors lead to a reduction in sensory processing at short response stimulus intervals (RSIs), it remains unclear if the relationship between error processing and subsequent sensory processing can be modulated by speeded-response errors. In the present study, event-related potentials and behavioral measures were recorded while participants performed a modified version of a Simon task, in which RSI duration was varied. We found that sensory processing, indexed by the P1 component, was reduced following errors at short (200-533 ms), but not long (866-1200 ms), RSIs. Moreover, the magnitude of error processing differentially influenced subsequent sensory processing as a function of RSI. However, whereas prior work demonstrated that the error positivity (Pe) modulated sensory processing on the subsequent trial, only the error-related negativity (ERN) did so within the Simon task. This suggests that although both data-limited errors and speeded-response errors can impact subsequent sensory processing, different stages of error processing appear to mediate this phenomenon.


Asunto(s)
Corteza Cerebral/fisiología , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Función Ejecutiva/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
18.
Plant Physiol ; 176(3): 2315-2329, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29284744

RESUMEN

Iron (Fe) is an essential micronutrient for symbiotic nitrogen fixation in legume nodules, where it is required for the activity of bacterial nitrogenase, plant leghemoglobin, respiratory oxidases, and other Fe proteins in both organisms. Fe solubility and transport within and between plant tissues is facilitated by organic chelators, such as nicotianamine and citrate. We have characterized a nodule-specific citrate transporter of the multidrug and toxic compound extrusion family, MtMATE67 of Medicago truncatula The MtMATE67 gene was induced early during nodule development and expressed primarily in the invasion zone of mature nodules. The MtMATE67 protein was localized to the plasma membrane of nodule cells and also the symbiosome membrane surrounding bacteroids in infected cells. In oocytes, MtMATE67 transported citrate out of cells in an Fe-activated manner. Loss of MtMATE67 gene function resulted in accumulation of Fe in the apoplasm of nodule cells and a substantial decrease in symbiotic nitrogen fixation and plant growth. Taken together, the results point to a primary role of MtMATE67 in citrate efflux from nodule cells in response to an Fe signal. This efflux is necessary to ensure Fe(III) solubility and mobility in the apoplasm and uptake into nodule cells. Likewise, MtMATE67-mediated citrate transport into the symbiosome space would increase the solubility and availability of Fe(III) for rhizobial bacteroids.


Asunto(s)
Hierro/metabolismo , Medicago truncatula/fisiología , Fijación del Nitrógeno/fisiología , Proteínas de Plantas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citratos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hierro/farmacocinética , Medicago truncatula/microbiología , Mutación , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/fisiología
19.
Front Hum Neurosci ; 11: 406, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848414

RESUMEN

Mind wandering is a pervasive threat to transportation safety, potentially accounting for a substantial number of crashes and fatalities. In the current study, mind wandering was induced through completion of the same task for 5 days, consisting of a 20-min monotonous freeway-driving scenario, a cognitive depletion task, and a repetition of the 20-min driving scenario driven in the reverse direction. Participants were periodically probed with auditory tones to self-report whether they were mind wandering or focused on the driving task. Self-reported mind wandering frequency was high, and did not statistically change over days of participation. For measures of driving performance, participant labeled periods of mind wandering were associated with reduced speed and reduced lane variability, in comparison to periods of on task performance. For measures of electrophysiology, periods of mind wandering were associated with increased power in the alpha band of the electroencephalogram (EEG), as well as a reduction in the magnitude of the P3a component of the event related potential (ERP) in response to the auditory probe. Results support that mind wandering has an impact on driving performance and the associated change in driver's attentional state is detectable in underlying brain physiology. Further, results suggest that detecting the internal cognitive state of humans is possible in a continuous task such as automobile driving. Identifying periods of likely mind wandering could serve as a useful research tool for assessment of driver attention, and could potentially lead to future in-vehicle safety countermeasures.

20.
J Neurosci ; 37(11): 2895-2903, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28193697

RESUMEN

Empirical evidence indicates that detecting one's own mistakes can serve as a signal to improve task performance. However, little work has focused on how task constraints, such as the response-stimulus interval (RSI), influence post-error adjustments. In the present study, event-related potential (ERP) and behavioral measures were used to investigate the time course of error-related processing while humans performed a difficult visual discrimination task. We found that error commission resulted in a marked reduction in both task performance and sensory processing on the following trial when RSIs were short, but that such impairments were not detectable at longer RSIs. Critically, diminished sensory processing at short RSIs, indexed by the stimulus-evoked P1 component, was predicted by an ERP measure of error processing, the Pe component. A control analysis ruled out a general lapse in attention or mind wandering as being predictive of subsequent reductions in sensory processing; instead, the data suggest that error detection causes an attentional bottleneck, which can diminish sensory processing on subsequent trials that occur in short succession. The findings demonstrate that the neural system dedicated to monitoring and improving behavior can, paradoxically, at times be the source of performance failures.SIGNIFICANCE STATEMENT The performance-monitoring system is a network of brain regions dedicated to monitoring behavior to adjust task performance when necessary. Previous research has demonstrated that activation of the performance monitoring system following incorrect decisions serves to improve future task performance. However, the present study provides evidence that, when perceptual decisions must be made rapidly (within approximately half a second of each other), activation of the performance-monitoring system is predictive of impaired task-related attention on the subsequent trial. The data illustrate that the cognitive demands imposed by error processing can interfere with, rather than enhance, task-related attention when subsequent decisions need to be made quickly.


Asunto(s)
Atención/fisiología , Percepción de Color/fisiología , Toma de Decisiones/fisiología , Tiempo de Reacción/fisiología , Análisis y Desempeño de Tareas , Corteza Visual/fisiología , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA