Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(18): 12858-12876, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37708305

RESUMEN

From our NETSseq-derived human brain transcriptomics data, we identified GPR55 as a potential molecular target for the treatment of motor symptoms in patients with Parkinson's disease. From a high-throughput screen, we identified and optimized agonists with nanomolar potency against both human and rat GPR55. We discovered compounds with either strong or limited ß-arrestin signaling and receptor desensitization, indicating biased signaling. A compound that showed minimal GPR55 desensitization demonstrated a reduction in firing frequency of medium spiny neurons cultured from rat striatum but did not reverse motor deficits in a rat hypolocomotion model. Further profiling of several desensitizing and non-desensitizing lead compounds showed that they are selective over related cannabinoid receptors CB1 and CB2 and that unbound brain concentrations well above the respective GPR55 EC50 can be readily achieved following oral administration. The novel brain-penetrant GPR55 agonists disclosed can be used to probe the role of this receptor in the brain.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Transducción de Señal , Humanos , Ratas , Animales , Receptores de Cannabinoides , beta-Arrestinas , Cuerpo Estriado/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
2.
Front Pharmacol ; 12: 669227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995100

RESUMEN

Idiopathic pulmonary fibrosis is a chronic and progressive fibrotic lung disease, and current treatments are limited by their side effects. Proliferation of human lung fibroblasts in the pulmonary interstitial tissue is a hallmark of this disease and is driven by prolonged ERK signalling in the nucleus in response to growth factors such as platelet-derived growth factor (PDGF). Agents that increase cAMP have been suggested as alternative therapies, as this second messenger can inhibit the ERK cascade. We previously examined a panel of eight Gαs-cAMP-coupled G protein-coupled receptors (GPCRs) endogenously expressed in human lung fibroblasts. Although the cAMP response was important for the anti-fibrotic effects of GPCR agonists, the magnitude of the acute cAMP response was not predictive of anti-fibrotic efficacy. Here we examined the reason for this apparent disconnect by stimulating the Gαs-coupled prostacyclin receptor and measuring downstream signalling at a sub-cellular level. MRE-269 and treprostinil caused sustained cAMP signalling in the nucleus and complete inhibition of PDGF-induced nuclear ERK and fibroblast proliferation. In contrast, iloprost caused a transient increase in nuclear cAMP, there was no effect of iloprost on PDGF-induced ERK in the nucleus, and this agonist was much less effective at reversing PDGF-induced proliferation. This suggests that sustained elevation of cAMP in the nucleus is necessary for efficient inhibition of PDGF-induced nuclear ERK and fibroblast proliferation. This is an important first step towards understanding of the signalling events that drive GPCR inhibition of fibrosis.

3.
Respir Res ; 19(1): 56, 2018 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-29625570

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease for which there is no cure. Current therapeutics are only able to slow disease progression, therefore there is a need to explore alternative, novel treatment options. There is increasing evidence that the 3', 5' cyclic adenosine monophosphate (cAMP) pathway is an important modulator in the development of fibrosis, with increasing levels of cAMP able to inhibit cellular processes associated with IPF. In this study we investigate the expression of Gs-coupled G protein-coupled receptors (GPCR) on human lung fibroblasts (HLF), and explore which can increase cAMP levels, and are most efficacious at inhibiting proliferation and differentiation. METHODS: Using TaqMan arrays we determined that fibroblasts express a range of Gs-coupled GPCR. The function of selected agonists at expressed receptors was then tested in a cAMP assay, and for their ability to inhibit fibroblast proliferation and differentiation. RESULTS: Expression analysis of GPCR showed that the prostacyclin, prostaglandin E2 (PGE2) receptor 2 and 4, melanocortin-1, ß2 adrenoceptor, adenosine 2B, dopamine-1, and adenosine 2A receptors were expressed in HLF. Measuring cAMP accumulation in the presence of selected Gs-coupled receptor ligands as well as an adenylyl cyclase activator and inhibitors of phosphodiesterase showed formoterol, PGE2, treprostinil and forskolin elicited maximal cAMP responses. The agonists that fully inhibited both fibroblast proliferation and differentiation, BAY60-6583 and MRE-269, were partial agonists in the cAMP accumulation assay. CONCLUSIONS: In this study we identified a number of ligands that act at a range of GPCR that increase cAMP and inhibit fibroblast proliferation and differentiation, suggesting that they may provide novel targets to develop new IPF treatments. From these results it appears that although the cAMP response is important in driving the anti-fibrotic effects we have observed, the magnitude of the acute cAMP response is not a good predictor of the extent of the inhibitory effect. This highlights the importance of monitoring the kinetics and localisation of intracellular signals, as well as multiple pathways when profiling novel compounds, as population second messenger assays may not always predict phenotypic outcomes.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Pulmón/metabolismo , Agonistas del Receptor de Adenosina A2/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Predicción , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...