Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 644: 169-189, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32943144

RESUMEN

The screening of large libraries of enzyme variants remains an essential tool in evolving biocatalysts toward improved properties for applications in medicine, chemistry, and a broad variety of other fields. Over the last decades, the technology for conducting systematic screens of arrayed members of a library of enzyme variants has made great strides in terms of increasing throughput and reducing assay volume. Here, we describe in detail an alternative to arrayed analysis, which is a screen based on density shifts in result of changed enzyme function, which allows highly parallelized screening. Specifically, we link changes in protease substrate specificity in vivo to the production of an alternative reporter protein, catalase. Depending on the catalase expression level, microcolonies of library bacteria with active protease variants contained in polymeric droplets generate an oxygen bubble, which causes a density shift in the droplet and enables it to float.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Péptido Hidrolasas , Biblioteca de Genes , Microfluídica , Especificidad por Sustrato
2.
Adv Biochem Eng Biotechnol ; 162: 117-146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-27757475

RESUMEN

Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).


Asunto(s)
Ingeniería Metabólica/métodos , Modelos Biológicos , Complejos Multienzimáticos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo
3.
Science ; 322(5901): 597-602, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18948542

RESUMEN

Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)-dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inmunoprecipitación de Cromatina , Reparación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Conversión Génica , Genes Fúngicos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Dedos de Zinc
4.
Mol Biol Cell ; 19(1): 171-80, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17978089

RESUMEN

RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint kinase Mec1, and it forms complexes with DNA repair enzymes, including the nuclease subunit Slx4, but the role of Rtt107 in the DNA damage response remains unclear. We find that Rtt107 interacts with chromatin when cells are treated with compounds that cause replication forks to arrest. This damage-dependent chromatin binding requires the acetyltransferase Rtt109, but it does not require acetylation of the known Rtt109 target, histone H3-K56. Chromatin binding of Rtt107 also requires the cullin Rtt101, which seems to play a direct role in Rtt107 recruitment, because the two proteins are found in complex with each other. Finally, we provide evidence that Rtt107 is bound at or near stalled replication forks in vivo. Together, these results indicate that Rtt109, Rtt101, and Rtt107, which genetic evidence suggests are functionally related, form a DNA damage response pathway that recruits Rtt107 complexes to damaged or stalled replication forks.


Asunto(s)
Proteínas Cullin/metabolismo , Replicación del ADN , Histona Acetiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación/efectos de los fármacos , Cromatina/metabolismo , Replicación del ADN/efectos de los fármacos , Eliminación de Gen , Histonas/metabolismo , Lisina/metabolismo , Metilmetanosulfonato/farmacología , Modelos Biológicos , Fenotipo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Origen de Réplica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Supresión Genética/efectos de los fármacos , Temperatura
5.
DNA Repair (Amst) ; 5(3): 336-46, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16325482

RESUMEN

Replication forks can stall spontaneously at specific sites in the genome, and upon encountering DNA lesions resulting from chemical or radiation damage. In Saccharomyces cerevisiae proteins implicated in processing of stalled replication forks include those encoded by the SGS1, TOP3, MUS81, MMS4, SLX1, SLX4, SLX5/HEX3, and SLX8 genes. We tested the roles of these genes in suppressing gross chromosomal rearrangements (GCRs), which include translocations, large interstitial deletions, and loss of a chromosome arm with de novo telomere addition. We found that mus81, mms4, slx1, slx4, slx5, and slx8 mutants all have elevated levels of spontaneous GCRs, and that SLX5 and SLX8 are particularly critical suppressors of GCRs during normal cell cycle progression. In addition to increased GCRs, deletion of SLX5 or SLX8 resulted in increased relocalization of the DNA damage checkpoint protein Ddc2 and activation of the checkpoint kinase Rad53, indicating the accumulation of spontaneous DNA damage. Surprisingly, mutants in slx5 or slx8 were not sensitive to transient replication fork stalling induced by hydroxyurea, nor were they sensitive to replication dependent double-strand breaks induced by camptothecin. This suggested that Slx8 and Slx8 played limited roles in stabilizing, restarting, or resolving transiently stalled replication forks, but were critical for preventing the accumulation of DNA damage during normal cell cycle progression.


Asunto(s)
Genoma Fúngico , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Supresión Genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Aberraciones Cromosómicas , Daño del ADN/efectos de la radiación , ADN de Hongos/genética , ADN de Hongos/efectos de la radiación , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
6.
Mol Biol Cell ; 17(1): 539-48, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16267268

RESUMEN

RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although the mechanism by which Rtt107 is targeted by Mec1 after checkpoint activation is currently unclear. Slx4, a component of the Slx1-Slx4 structure-specific nuclease, formed a complex with Rtt107. Deletion of SLX4 conferred many of the same DNA-repair defects observed in rtt107delta, including DNA damage sensitivity, prolonged DNA damage checkpoint activation, and increased spontaneous DNA damage. These phenotypes were not shared by the Slx4 binding partner Slx1, suggesting that the functions of the Slx4 and Slx1 proteins in the DNA damage response were not identical. Of particular interest, Slx4, but not Slx1, was required for phosphorylation of Rtt107 by Mec1 in vivo, indicating that Slx4 was a mediator of DNA damage-dependent phosphorylation of the checkpoint effector Rtt107. We propose that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Slx4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN , ADN de Hongos/genética , Endodesoxirribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Farmacorresistencia Fúngica , Endodesoxirribonucleasas/genética , Péptidos y Proteínas de Señalización Intracelular , Metilmetanosulfonato/farmacología , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Biochem J ; 367(Pt 3): 601-8, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12160465

RESUMEN

CRM66 (cross-reactive 66 kDa protein) is an inactive mutant form of Pseudomonas aeruginosa exotoxin A that has been isolated from a mutant strain of P. aeruginosa derived from nitrosoguanidine-based mutagenesis. The mutation within this enzyme toxin was previously identified as H426Y and it was shown to possess significantly reduced enzymic activity. Furthermore, it was previously suggested that His-426 may directly participate in the catalytic mechanism of the exotoxin A enzyme and that it may also play an important role in the binding of the protein substrate of exotoxin A, a critical protein factor in eukaryotic protein translation known as elongation factor-2. In order to more thoroughly characterize the role of His-426 in the enzyme mechanism of exotoxin A, amino acid substitutions were made within helix 1 of the enzyme domain in the vicinity of the His-426 residue. Analysis of the site-directed mutagenesis results involving kinetic and protein structural integrity measurements revealed that His-426 H-bonds to Tyr-502 and that replacement of His-426 with polar substitutions leads to structural alterations of the enzyme's folded conformation. Furthermore, it was shown that His-426 is not important for the binding of either of the two substrates of exotoxin A, NAD(+) or elongation factor-2. In summary, these data show that His-426 is not an active-site residue and that it is not important for substrate binding or orientation, but that it plays an important structural role in helping to maintain the folded conformation of the enzyme toxin. Therefore, the role of His-426 would seem to be to tether helix 1 to the main body of the enzyme, and mutations resulting in the disruption of this region of the enzyme result in a significantly impaired enzyme.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Histidina/metabolismo , Factores de Virulencia/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Dicroismo Circular , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Exotoxinas/química , Exotoxinas/genética , Mutagénesis Sitio-Dirigida , Factores de Virulencia/química , Factores de Virulencia/genética , Exotoxina A de Pseudomonas aeruginosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...