Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Endocrinology ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608138

RESUMEN

Clomiphene citrate is a common treatment for ovulation induction in subfertile women, but its use is associated with elevated risk of adverse perinatal outcomes and birth defects. To investigate the biological plausibility of a causal relationship, this study investigated in mice the consequences for fetal development and pregnancy outcome of peri-conception clomiphene citrate administration at doses approximating human exposures. A dose-dependent adverse effect of clomiphene citrate given twice in the 36 h after mating was seen, with a moderate dose of 0.75 mg/kg sufficient to cause altered reproductive outcomes in three independent cohorts. Viable pregnancy was reduced by 30%, late gestation fetal weight was reduced by 16%, and ∼30% of fetuses exhibited delayed development and/or congenital abnormalities not seen in control dams, including defects of the lung, kidney, liver, eye, skin, limbs, and umbilicus. Clomiphene citrate also caused a 30 h average delay in time of birth, and elevated rate of pup death in the early postnatal phase. In surviving offspring, growth trajectory tracking and body morphometry analysis at 20 weeks of age showed post-weaning growth and development comparable to controls. A dysregulated inflammatory response in the endometrium was observed and may contribute to the underlying pathophysiological mechanism. These results demonstrate that in utero exposure to clomiphene citrate during early pregnancy can inhibit implantation and impact fetal growth and development, causing adverse perinatal outcomes. The findings raise the prospect of similar iatrogenic effects in women where clomiphene citrate may be present in the peri-conception phase unless its use is well-supervised.

2.
J Clin Invest ; 134(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488008

RESUMEN

Mammalian preimplantation embryos often contain chromosomal defects that arose in the first divisions after fertilization and affect a subpopulation of cells - an event known as mosaic aneuploidy. In this issue of the JCI, Chavli et al. report single-cell genomic sequencing data for rigorous evaluation of the incidence and degree of mosaic aneuploidy in healthy human in vitro fertilization (IVF) embryos. Remarkably, mosaic aneuploidy occurred in at least 80% of human blastocyst-stage embryos, with often less than 20% of cells showing defects. These findings confirm that mosaic aneuploidy is prevalent in human embryos, indicating that the process is a widespread event that rarely has clinical consequences. There are major implications for preimplantation genetic testing of aneuploidy (PGT-A), a test commonly used to screen and select IVF embryos for transfer. The application and benefit of this technology is controversial, and the findings provide more cause for caution on its use.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas Genéticas , Aneuploidia , Fertilización In Vitro , Mosaicismo
3.
iScience ; 27(2): 108994, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327801

RESUMEN

Regulatory T (Treg) cell defects are implicated in disorders of embryo implantation and placental development, but the origins of Treg cell dysfunction are unknown. Here, we comprehensively analyzed the phenotypes and transcriptional profile of peripheral blood Treg cells in individuals with early pregnancy failure (EPF). Compared to fertile subjects, EPF subjects had 32% fewer total Treg cells and 54% fewer CD45RA+CCR7+ naive Treg cells among CD4+ T cells, an altered Treg cell phenotype with reduced transcription factor FOXP3 and suppressive marker CTLA4 expression, and lower Treg:Th1 and Treg:Th17 ratios. RNA sequencing demonstrated an aberrant gene expression profile, with upregulation of pro-inflammatory genes including CSF2, IL4, IL17A, IL21, and IFNG in EPF Treg cells. In silico analysis revealed 25% of the Treg cell dysregulated genes are targets of FOXP3. We conclude that EPF is associated with systemic Treg cell defects arising due to disrupted FOXP3 transcriptional control and loss of lineage fidelity.

4.
J Neuroinflammation ; 20(1): 241, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864272

RESUMEN

BACKGROUND: Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS: We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS: Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION: Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.


Asunto(s)
Antiinflamatorios , Neuroprotección , Embarazo , Animales , Femenino , Humanos , Encéfalo
5.
BMC Genomics ; 24(1): 590, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794337

RESUMEN

BACKGROUND: Receptivity of the uterus is essential for embryo implantation and progression of mammalian pregnancy. Acquisition of receptivity involves major molecular and cellular changes in the endometrial lining of the uterus from a non-receptive state at ovulation, to a receptive state several days later. The precise molecular mechanisms underlying this transition and their upstream regulators remain to be fully characterized. Here, we aimed to generate a comprehensive profile of the endometrial transcriptome in the peri-ovulatory and peri-implantation states, to define the genes and gene pathways that are different between these states, and to identify new candidate upstream regulators of this transition, in the mouse. RESULTS: High throughput RNA-sequencing was utilized to identify genes and pathways expressed in the endometrium of female C57Bl/6 mice at estrus and on day 3.5 post-coitum (pc) after mating with BALB/c males (n = 3-4 biological replicates). Compared to the endometrium at estrus, 388 genes were considered differentially expressed in the endometrium on day 3.5 post-coitum. The transcriptional changes indicated substantial modulation of uterine immune and vascular systems during the pre-implantation phase, with the functional terms Angiogenesis, Chemotaxis, and Lymphangiogenesis predominating. Ingenuity Pathway Analysis software predicted the activation of several upstream regulators previously shown to be involved in the transition to receptivity including various cytokines, ovarian steroid hormones, prostaglandin E2, and vascular endothelial growth factor A. Our analysis also revealed four candidate upstream regulators that have not previously been implicated in the acquisition of uterine receptivity, with growth differentiation factor 2, lysine acetyltransferase 6 A, and N-6 adenine-specific DNA methyltransferase 1 predicted to be activated, and peptidylprolyl isomerase F predicted to be inhibited. CONCLUSIONS: This study confirms that the transcriptome of a receptive uterus is vastly different to the non-receptive uterus and identifies several genes, regulatory pathways, and upstream drivers not previously associated with implantation. The findings will inform further research to investigate the molecular mechanisms of uterine receptivity.


Asunto(s)
Transcriptoma , Factor A de Crecimiento Endotelial Vascular , Embarazo , Masculino , Femenino , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Endometrio/metabolismo , Implantación del Embrión/genética , Útero , Mamíferos/genética
6.
JCI Insight ; 8(11)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37191999

RESUMEN

Progesterone (P4) is essential for embryo implantation, but the extent to which the pro-gestational effects of P4 depend on the maternal immune compartment is unknown. Here, we investigate whether regulatory T cells (Treg cells) act to mediate luteal phase P4 effects on uterine receptivity in mice. P4 antagonist RU486 administered to mice on days 0.5 and 2.5 postcoitum to model luteal phase P4 deficiency caused fewer CD4+Foxp3+ Treg cells and impaired Treg functional competence, along with dysfunctional uterine vascular remodeling and perturbed placental development in midgestation. These effects were linked with fetal loss and fetal growth restriction, accompanied by a Th1/CD8-skewed T cell profile. Adoptive transfer at implantation of Treg cells - but not conventional T cells - alleviated fetal loss and fetal growth restriction by mitigating adverse effects of reduced P4 signaling on uterine blood vessel remodeling and placental structure and by restoring maternal T cell imbalance. These findings demonstrate an essential role for Treg cells in mediating P4 effects at implantation and indicate that Treg cells are a sensitive and critical effector mechanism through which P4 drives uterine receptivity to support robust placental development and fetal growth.


Asunto(s)
Progesterona , Linfocitos T Reguladores , Humanos , Embarazo , Femenino , Animales , Ratones , Progesterona/farmacología , Placenta , Retardo del Crecimiento Fetal , Implantación del Embrión/fisiología , Desarrollo Fetal
7.
Andrology ; 11(7): 1245-1266, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36891953

RESUMEN

OBJECTIVE: Seminal plasma cytokines are associated with fertility and reproductive health, but progressing their clinical utility is hampered by absence of reference data on concentration ranges of relevant cytokines in healthy men. We employed a systematic approach to assemble current evidence on the concentrations of immune regulatory cytokines present in seminal plasma (SP) of normozoospermic and/or fertile men and evaluated the impact of different platform methodologies for cytokine quantification. EVIDENCE REVIEW: A systematic literature search was performed utilising PubMed, Web of Science and Scopus. Databases were searched from inception until 30th June 2022 inclusive, using combinations of keywords pertaining to seminal fluid and cytokines, and was restricted to human participants. Original data with values reported as concentration of specific cytokines in SP of men clearly defined as fertile or normozoospermic were extracted from studies written in English. RESULTS: A total of 3769 publications were initially identified, of which 118 fulfilled the eligibility criteria for inclusion. A total of 51 individual cytokines are detectable in SP of healthy men. The number of studies reporting on each cytokine range from 1 to >20. The reported concentrations for many cytokines linked with fertility status, including IL6, CXCL8/IL8, and TNFA, are highly variable between published studies. This is associated with the different immunoassay methodologies utilised and may be exacerbated by a lack of validation of assays to ensure suitability for SP assessment. Due to the large variation between studies, accurate reference ranges for healthy men cannot be determined from the published data. CONCLUSIONS: The concentrations of cytokines and chemokines detected in SP is inconsistent and highly variable between studies and cohorts, limiting current capacity to define reference ranges for cytokine concentrations in fertile men. The lack of standardisation in methods used to process and store SP, and variation in platforms used to evaluate cytokine abundance, are factors contributing to the observed heterogeneity. To progress the clinical utility of SP cytokine analysis will require standardisation and validation of methodologies so that reference ranges for healthy fertile men can be defined.


Asunto(s)
Infertilidad Masculina , Semen , Masculino , Humanos , Citocinas , Fertilidad , Análisis de Varianza
8.
PLoS Pathog ; 19(3): e1010843, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897927

RESUMEN

The immunological surveillance factors controlling vulnerability of the female reproductive tract (FRT) to sexually transmitted viral infections are not well understood. Interferon-epsilon (IFNɛ) is a distinct, immunoregulatory type-I IFN that is constitutively expressed by FRT epithelium and is not induced by pathogens like other antiviral IFNs α, ß and λ. We show the necessity of IFNɛ for Zika Virus (ZIKV) protection by: increased susceptibility of IFNɛ-/- mice; their "rescue" by intravaginal recombinant IFNɛ treatment and blockade of protective endogenous IFNɛ by neutralising antibody. Complementary studies in human FRT cell lines showed IFNɛ had potent anti-ZIKV activity, associated with transcriptome responses similar to IFNλ but lacking the proinflammatory gene signature of IFNα. IFNɛ activated STAT1/2 pathways similar to IFNα and λ that were inhibited by ZIKV-encoded non-structural (NS) proteins, but not if IFNε exposure preceded infection. This scenario is provided by the constitutive expression of endogenous IFNε. However, the IFNɛ expression was not inhibited by ZIKV NS proteins despite their ability to antagonise the expression of IFNß or λ. Thus, the constitutive expression of IFNɛ provides cellular resistance to viral strategies of antagonism and maximises the antiviral activity of the FRT. These results show that the unique spatiotemporal properties of IFNε provides an innate immune surveillance network in the FRT that is a significant barrier to viral infection with important implications for prevention and therapy.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Ratones , Antivirales/farmacología , Genitales Femeninos , Factores Inmunológicos , Interferón-alfa/farmacología , Virus Zika/genética
9.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946464

RESUMEN

Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Placenta , Embarazo , Femenino , Humanos , Ratones , Animales , Adolescente , Proteínas Reguladoras de la Apoptosis/metabolismo , Útero/metabolismo , Implantación del Embrión/fisiología , Placentación
10.
Arch Dis Child Fetal Neonatal Ed ; 108(5): 471-477, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36690436

RESUMEN

OBJECTIVE: To evaluate the association of donor sex with transfusion-associated recipient immune responses in preterm newborns receiving unwashed and washed blood. DESIGN: A cohort study using data collected during the Effect of Washed versus Unwashed Packed Red Blood Cell Transfusion on Immune Responses in the Extremely Preterm Newborn randomised trial. SETTING: Participants were recruited from two South Australian hospitals between September 2015 and December 2020. PATIENTS: Preterm newborns (<29 weeks). INTERVENTIONS: Transfusion with unwashed and washed packed red blood cells (PRBCs) from either exclusively male or any female donor for the first three transfusions. MAIN OUTCOMES MEASURES: The primary outcome was the change from baseline in post-transfusion plasma cytokine concentrations, specifically interferon gamma, interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12, IL-17A and tumour necrosis factor (TNF). RESULTS: In total, 153 newborns were evaluated. By the third transfusion, the magnitude of pretransfusion to post-transfusion change in cytokines between the groups differed for IL-6 (p=0.003), IL-12 (p=0.008), IL-17A (p=0.003) and TNF (p=0.007). On post hoc comparison, compared with the unwashed-any female donor group, IL-6 (p<0.05), IL-12 (p<0.05) and IL-17A (p<0.01) were lower in the washed-exclusively male donor group, and IL-6 (p<0.01), IL-12 (p<0.05) and TNF (p<0.01) were lower in the washed-any female donor group. CONCLUSION: These findings suggest that transfusion with unwashed PRBCs from female donors is associated with an increased recipient immune response, an effect that can be ameliorated with pretransfusion washing. Larger randomised controlled studies confirming this mechanistic link between donor sex and transfusion-associated morbidity are warranted. TRIAL REGISTRATION NUMBER: ACTRN12613000237785.


Asunto(s)
Interleucina-17 , Interleucina-6 , Humanos , Recién Nacido , Masculino , Femenino , Estudios de Cohortes , Australia , Interleucina-12 , Eritrocitos , Inmunidad
11.
J Immunol ; 209(8): 1426-1436, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36192117

RESUMEN

Pregnancy depends on a state of maternal immune tolerance mediated by CD4+ regulatory T (Treg) cells. Uterine Treg cells release anti-inflammatory factors, inhibit effector immunity, and support adaptation of the uterine vasculature to facilitate placental development. Insufficient Treg cells or inadequate functional competence is implicated in infertility and recurrent miscarriage, as well as pregnancy complications preeclampsia, fetal growth restriction, and preterm birth, which stem from placental insufficiency. In this review we address an emerging area of interest in pregnancy immunology-the significance of metabolic status in regulating the Treg cell expansion required for maternal-fetal tolerance. We describe how hyperglycemia and insulin resistance affect T cell responses to suppress generation of Treg cells, summarize data that implicate a role for altered glucose metabolism in impaired maternal-fetal tolerance, and explore the prospect of targeting dysregulated metabolism to rebalance the adaptive immune response in women experiencing reproductive disorders.


Asunto(s)
Placenta , Nacimiento Prematuro , Femenino , Glucosa/metabolismo , Humanos , Tolerancia Inmunológica , Recién Nacido , Embarazo , Nacimiento Prematuro/metabolismo , Linfocitos T Reguladores
12.
Endocrinology ; 163(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35786711

RESUMEN

Regulatory T (Treg) cells are a specialized CD4+ T cell subpopulation that are essential for immune homeostasis, immune tolerance, and protection against autoimmunity. There is evidence that sex-steroid hormones estrogen and progesterone modulate Treg cell abundance and phenotype in women. Since natural oscillations in these hormones are modified by hormonal contraceptives, we examined whether oral contraception (OC) use impacts Treg cells and related T cell populations. T cells were analyzed by multiparameter flow cytometry in peripheral blood collected across the menstrual cycle from healthy women either using OC or without hormonal contraception and from age-matched men. Compared to naturally cycling women, women using OC had fewer Treg cells and an altered Treg cell phenotype. Notably, Treg cells exhibiting a strongly suppressive phenotype, defined by high FOXP3, CD25, Helios, HLADR, CTLA4, and Ki67, comprised a lower proportion of total Treg cells, particularly in the early- and mid-cycle phases. The changes were moderate compared to more substantial differences in Treg cells between women and men, wherein women had fewer Treg cells-especially of the effector memory Treg cell subset-associated with more T helper type 1 (Th1) cells and CD8+ T cells and lower Treg:Th1 cell and Treg:CD8+ T cell ratios than men. These findings imply that OC can modulate the number and phenotype of peripheral blood Treg cells and raise the possibility that Treg cells contribute to the physiological changes and altered disease susceptibility linked with OC use.


Asunto(s)
Factores de Transcripción Forkhead , Linfocitos T Reguladores , Anticoncepción , Femenino , Factores de Transcripción Forkhead/metabolismo , Hormonas/metabolismo , Humanos , Fenotipo , Linfocitos T Reguladores/metabolismo
13.
Fertil Steril ; 117(6): 1107-1120, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618356

RESUMEN

Immune cells are essential for endometrial receptivity to embryo implantation and early placental development. They exert tissue-remodeling and immune regulatory roles-acting to promote epithelial attachment competence, regulate the differentiation of decidual cells, remodel the uterine vasculature, control and resolve inflammatory activation, and suppress destructive immunity to paternally inherited alloantigens. From a biological perspective, the endometrial immune response exerts a form of "quality control"-it promotes implantation success when conditions are favorable but constrains receptivity when physiological circumstances are not ideal. Women with recurrent implantation failure and recurrent miscarriage may exhibit altered numbers or disturbed function of certain uterine immune cell populations-most notably uterine natural killer cells and regulatory T cells. Preclinical and animal studies indicate that deficiencies or aberrant activation states in these cells can be causal in the pathophysiological mechanisms of infertility. Immune cells are, therefore, targets for diagnostic evaluation and therapeutic intervention. However, current diagnostic tests are overly simplistic and have limited clinical utility. To be more informative, they need to account for the full complexity and reflect the range of perturbations that can occur in uterine immune cell phenotypes and networks. Moreover, safe and effective interventions to modulate these cells are in their infancy, and personalized approaches matched to specific diagnostic criteria will be needed. Here we summarize current biological understanding and identify knowledge gaps to be resolved before the promise of therapies to target the uterine immune response can be fully realized.


Asunto(s)
Aborto Habitual , Placenta , Aborto Habitual/diagnóstico , Animales , Implantación del Embrión/fisiología , Endometrio/fisiología , Femenino , Humanos , Embarazo , Útero
14.
Mol Aspects Med ; 87: 101098, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35379485

RESUMEN

Pregnancy complications including fetal growth restriction, preeclampsia, and preterm birth, as well as gestational diabetes, affect one in every four to five pregnancies. Accumulating evidence indicates that increased production of reactive oxygen species accompanies these complications. Given that reactive oxygen species are cell stress-inducing agents, they may have a causal role in disease pathophysiology, although the exact mechanisms by which they contribute to pregnancy complications are not completely understood. Since many environmental and lifestyle factors and exposures are known to modulate reactive oxygen species production, the exposome of pregnant women could contribute to increased generation of reactive oxygen species. The objective of this review is to provide a comprehensive overview of the endogenous and exogenous exposome factors that regulate reactive species in healthy and complicated pregnancies. We also provide a description of dietary interventions aimed at the reduction of reactive species in order to attenuate adverse pregnancy outcome. Dietary interventions in general hold minimal risk in pregnancy and could therefore be considered a promising therapeutic approach.


Asunto(s)
Exposoma , Complicaciones del Embarazo , Nacimiento Prematuro , Femenino , Humanos , Recién Nacido , Estrés Oxidativo , Embarazo , Complicaciones del Embarazo/etiología , Especies Reactivas de Oxígeno
15.
Clin Transl Immunology ; 11(3): e1377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284073

RESUMEN

Objectives: Transfusion with washed packed red blood cells (PRBCs) may be associated with reduced transfusion-related pro-inflammatory cytokine production. This may be because of alterations in recipient immune responses. Methods: This randomised trial evaluated the effect of transfusion with washed compared with unwashed PRBCs on pro-inflammatory cytokines and endothelial activation in 154 preterm newborns born before 29 weeks' gestation. Changes in plasma cytokines and measures of endothelial activation in recipient blood were analysed after each of the first three transfusions. Results: By the third transfusion, infants receiving unwashed blood had an increase in IL-17A (P = 0.04) and TNF (P = 0.007), whereas infants receiving washed blood had reductions in IL-17A (P = 0.013), TNF (P = 0.048), IL-6 (P = 0.001), IL-8 (P = 0.037), IL-12 (P = 0.001) and IFN-γ (P = 0.001). The magnitude of the post-transfusion increase in cytokines did not change between the first and third transfusions in the unwashed group but decreased in the washed group for IL-12 (P = 0.001), IL-17A (P = 0.01) and TNF (P = 0.03), with the difference between the groups reaching significance by the third transfusion (P < 0.001 for each cytokine). Conclusion: The pro-inflammatory immune response to transfusion in preterm infants can be modified when PRBCs are washed prior to transfusion. Further studies are required to determine whether the use of washed PRBCs for neonatal transfusion translates into reduced morbidity and mortality.

16.
Proteomics ; 22(9): e2100227, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35014747

RESUMEN

The seminal vesicles are male accessory sex glands that contribute the major portion of the seminal plasma in which mammalian spermatozoa are bathed during ejaculation. In addition to conveying sperm through the ejaculatory duct, seminal vesicle secretions support sperm survival after ejaculation, and influence the female reproductive tract to promote receptivity to pregnancy. Analysis of seminal vesicle fluid (SVF) composition by proteomics has proven challenging, due to its highly biased protein signature with a small subset of dominant proteins and the difficulty of solubilizing this viscous fluid. As such, publicly available proteomic datasets identify only 85 SVF proteins in total. To address this limitation, we report a new preparative methodology involving sequential solubilization of mouse SVF in guanidine hydrochloride, acetone precipitation, and analysis by label-free mass spectrometry. Using this strategy, we identified 126 SVF proteins, including 83 previously undetected in SVF. Members of the seminal vesicle secretory protein family were the most abundant, accounting for 79% of all peptide spectrum matches. Functional analysis identified inflammation and formation of the vaginal plug as the two most prominent biological processes. Other notable processes included modulation of sperm function and regulation of the female reproductive tract immune environment. Together, these findings provide a robust methodological framework for future SVF studies and identify novel proteins with potential to influence both male and female reproductive physiology.


Asunto(s)
Proteómica , Vesículas Seminales , Animales , Femenino , Masculino , Mamíferos , Ratones , Embarazo , Proteínas/metabolismo , Proteómica/métodos , Semen/metabolismo , Vesículas Seminales/metabolismo , Espermatozoides/metabolismo
18.
BMC Genomics ; 22(1): 728, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625024

RESUMEN

BACKGROUND: The seminal vesicles synthesise bioactive factors that support gamete function, modulate the female reproductive tract to promote implantation, and influence developmental programming of offspring phenotype. Despite the significance of the seminal vesicles in reproduction, their biology remains poorly defined. Here, to advance understanding of seminal vesicle biology, we analyse the mouse seminal vesicle transcriptome under normal physiological conditions and in response to acute exposure to the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or vehicle control daily for five consecutive days prior to collecting seminal vesicle tissue 72 h following the final injection. RESULTS: A total of 15,304 genes were identified in the seminal vesicles with those encoding secreted proteins amongst the most abundant. In addition to reproductive hormone pathways, functional annotation of the seminal vesicle transcriptome identified cell proliferation, protein synthesis, and cellular death and survival pathways as prominent biological processes. Administration of acrylamide elicited 70 differentially regulated (fold-change ≥1.5 or ≤ 0.67) genes, several of which were orthogonally validated using quantitative PCR. Pathways that initiate gene and protein synthesis to promote cellular survival were prominent amongst the dysregulated pathways. Inflammation was also a key transcriptomic response to acrylamide, with the cytokine, Colony stimulating factor 2 (Csf2) identified as a top-ranked upstream driver and inflammatory mediator associated with recovery of homeostasis. Early growth response (Egr1), C-C motif chemokine ligand 8 (Ccl8), and Collagen, type V, alpha 1 (Col5a1) were also identified amongst the dysregulated genes. Additionally, acrylamide treatment led to subtle changes in the expression of genes that encode proteins secreted by the seminal vesicle, including the complement regulator, Complement factor b (Cfb). CONCLUSIONS: These data add to emerging evidence demonstrating that the seminal vesicles, like other male reproductive tract tissues, are sensitive to environmental insults, and respond in a manner with potential to exert impact on fetal development and later offspring health.


Asunto(s)
Vesículas Seminales , Transcriptoma , Acrilamida/toxicidad , Animales , Citocinas , Femenino , Masculino , Ratones , Reproducción/genética
19.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622802

RESUMEN

Macrophages are commonly thought to contribute to the pathophysiology of preterm labor by amplifying inflammation - but a protective role has not previously been considered to our knowledge. We hypothesized that given their antiinflammatory capability in early pregnancy, macrophages exert essential roles in maintenance of late gestation and that insufficient macrophages may predispose individuals to spontaneous preterm labor and adverse neonatal outcomes. Here, we showed that women with spontaneous preterm birth had reduced CD209+CD206+ expression in alternatively activated CD45+CD14+ICAM3- macrophages and increased TNF expression in proinflammatory CD45+CD14+CD80+HLA-DR+ macrophages in the uterine decidua at the materno-fetal interface. In Cd11bDTR/DTR mice, depletion of maternal CD11b+ myeloid cells caused preterm birth, neonatal death, and postnatal growth impairment, accompanied by uterine cytokine and leukocyte changes indicative of a proinflammatory response, while adoptive transfer of WT macrophages prevented preterm birth and partially rescued neonatal loss. In a model of intra-amniotic inflammation-induced preterm birth, macrophages polarized in vitro to an M2 phenotype showed superior capacity over nonpolarized macrophages to reduce uterine and fetal inflammation, prevent preterm birth, and improve neonatal survival. We conclude that macrophages exert a critical homeostatic regulatory role in late gestation and are implicated as a determinant of susceptibility to spontaneous preterm birth and fetal inflammatory injury.


Asunto(s)
Enfermedades Fetales/inmunología , Feto/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Nacimiento Prematuro/inmunología , Adulto , Animales , Animales Recién Nacidos , Antígeno CD11b/genética , Citocinas , Decidua/inmunología , Decidua/metabolismo , Femenino , Feto/metabolismo , Homeostasis/inmunología , Humanos , Ratones , Miometrio/inmunología , Miometrio/metabolismo , Trabajo de Parto Prematuro/inmunología , Trabajo de Parto Prematuro/metabolismo , Embarazo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
20.
Clin Transl Immunology ; 10(8): e1328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408876

RESUMEN

OBJECTIVES: Intravenous infusion of Intralipid is an adjunct therapy in assisted reproduction treatment (ART) when immune-associated infertility is suspected. Here, we evaluated the effect of Intralipid infusion on regulatory T cells (Treg cells), effector T cells and plasma cytokines in peripheral blood of women undertaking IVF. METHODS: This prospective, observational pilot study assessed Intralipid infusion in 14 women exhibiting recurrent implantation failure, a clinical sign of immune-associated infertility. Peripheral blood was collected immediately prior to and 7 days after intravenous administration of Intralipid. Plasma cytokines were measured by Luminex, and T-cell subsets were analysed by flow cytometry. RESULTS: A small increase in conventional CD8+ T cells occurred after Intralipid infusion, but no change was seen in CD4+ Treg cells, or naïve, memory or effector memory T cells. Proliferation marker Ki67, transcription factors Tbet and RORγt, and markers of suppressive capacity CTLA4 and HLA-DR were unchanged. Dimensionality-reduction analysis using the tSNE algorithm confirmed no phenotype shift within Treg cells or other T cells. Intralipid infusion increased plasma CCL2, CCL3, CXCL8, GM-CSF, G-CSF, IL-6, IL-21, TNF and VEGF. CONCLUSION: Intralipid infusion elicited elevated pro-inflammatory cytokines, and a minor increase in CD8+ T cells, but no change in pro-tolerogenic Treg cells. Notwithstanding the limitation of no placebo control, the results do not support Intralipid as a candidate intervention to attenuate the Treg cell response in women undergoing ART. Future placebo-controlled studies are needed to confirm the potential efficacy and clinical significance of Intralipid in attenuating cytokine induction and circulating CD8+ T cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA