Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6793, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880210

RESUMEN

Matrix imaging paves the way towards a next revolution in wave physics. Based on the response matrix recorded between a set of sensors, it enables an optimized compensation of aberration phenomena and multiple scattering events that usually drastically hinder the focusing process in heterogeneous media. Although it gave rise to spectacular results in optical microscopy or seismic imaging, the success of matrix imaging has been so far relatively limited with ultrasonic waves because wave control is generally only performed with a linear array of transducers. In this paper, we extend ultrasound matrix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much sharper estimation of the transmission matrix that links each transducer and each medium voxel. Here, we first present an experimental proof of concept on a tissue-mimicking phantom through ex-vivo tissues and then, show the potential of 3D matrix imaging for transcranial applications.

2.
Nat Commun ; 14(1): 3584, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328490

RESUMEN

Super-resolution optoacoustic imaging of microvascular structures deep in mammalian tissues has so far been impeded by strong absorption from densely-packed red blood cells. Here we devised 5 µm biocompatible dichloromethane-based microdroplets exhibiting several orders of magnitude higher optical absorption than red blood cells at near-infrared wavelengths, thus enabling single-particle detection in vivo. We demonstrate non-invasive three-dimensional microangiography of the mouse brain beyond the acoustic diffraction limit (<20 µm resolution). Blood flow velocity quantification in microvascular networks and light fluence mapping was also accomplished. In mice affected by acute ischemic stroke, the multi-parametric multi-scale observations enabled by super-resolution and spectroscopic optoacoustic imaging revealed significant differences in microvascular density, flow and oxygen saturation in ipsi- and contra-lateral brain hemispheres. Given the sensitivity of optoacoustics to functional, metabolic and molecular events in living tissues, the new approach paves the way for non-invasive microscopic observations with unrivaled resolution, contrast and speed.


Asunto(s)
Accidente Cerebrovascular Isquémico , Técnicas Fotoacústicas , Ratones , Animales , Técnicas Fotoacústicas/métodos , Angiografía , Microvasos , Acústica , Mamíferos
3.
Phys Med Biol ; 68(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36595330

RESUMEN

Objective. Imaging the human brain vasculature with high spatial and temporal resolution remains challenging in the clinic today. Transcranial ultrasound is still scarcely used for cerebrovascular imaging, due to low sensitivity and strong phase aberrations induced by the skull bone that only enable the proximal part major brain vessel imaging, even with ultrasound contrast agent injection (microbubbles).Approach. Here, we propose an adaptive aberration correction technique for skull bone aberrations based on the backscattered signals coming from intravenously injected microbubbles. Our aberration correction technique was implemented to image brain vasculature in human adults through temporal and occipital bone windows. For each subject, an effective speed of sound, as well as a phase aberration profile, were determined in several isoplanatic patches spread across the image. This information was then used in the beamforming process.Main results. This aberration correction method reduced the number of artefacts, such as ghost vessels, in the images. It improved image quality both for ultrafast Doppler imaging and ultrasound localization microscopy (ULM), especially in patients with thick bone windows. For ultrafast Doppler images, the contrast was increased by 4 dB on average, and for ULM, the number of detected microbubble tracks was increased by 38%.Significance. This technique is thus promising for better diagnosis and follow-up of brain pathologies such as aneurysms, arterial stenoses, arterial occlusions, microvascular disease and stroke and could make transcranial ultrasound imaging possible even in particularly difficult-to-image human adults.


Asunto(s)
Encéfalo , Cráneo , Adulto , Humanos , Ultrasonografía/métodos , Encéfalo/irrigación sanguínea , Cráneo/diagnóstico por imagen , Sonido , Medios de Contraste , Microburbujas
4.
IEEE Trans Med Imaging ; 41(12): 3907-3920, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35976836

RESUMEN

This is the first article in a series of two dealing with a matrix approach for aberration quantification and correction in ultrasound imaging. Advanced synthetic beamforming relies on a double focusing operation at transmission and reception on each point of the medium. Ultrasound matrix imaging (UMI) consists in decoupling the location of these transmitted and received focal spots. The response between those virtual transducers form the so-called focused reflection matrix that actually contains much more information than a confocal ultrasound image. In this paper, a time-frequency analysis of this matrix is performed, which highlights the single and multiple scattering contributions as well as the impact of aberrations in the monochromatic and broadband regimes. Interestingly, this analysis enables the measurement of the incoherent input-output point spread function at any pixel of this image. A fitting process enables the quantification of the single scattering, multiple scattering and noise components in the image. From the single scattering contribution, a focusing criterion is defined, and its evolution used to quantify the amount of aberration throughout the ultrasound image. In contrast to the state-of-the-art coherence factor, this new indicator is robust to multiple scattering and electronic noise, thereby providing a contrasted map of the focusing quality at a much better transverse resolution. After a validation of the proof-of-concept based on time-domain simulations, UMI is applied to the in-vivo study of a human calf. Beyond this specific example, UMI opens a new route for speed-of-sound and scattering quantification in ultrasound imaging.


Asunto(s)
Ruido , Transductores , Humanos , Ultrasonografía/métodos , Fantasmas de Imagen
5.
IEEE Trans Med Imaging ; 41(12): 3921-3938, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35976837

RESUMEN

This is the second article in a series of two which report on a matrix approach for ultrasound imaging in heterogeneous media. This article describes the quantification and correction of aberration, i.e. the distortion of an image caused by spatial variations in the medium speed-of-sound. Adaptive focusing can compensate for aberration, but is only effective over a restricted area called the isoplanatic patch. Here, we use an experimentally-recorded matrix of reflected acoustic signals to synthesize a set of virtual transducers. We then examine wave propagation between these virtual transducers and an arbitrary correction plane. Such wave-fronts consist of two components: (i) An ideal geometric wave-front linked to diffraction and the input focusing point, and; (ii) Phase distortions induced by the speed-of-sound variations. These distortions are stored in a so-called distortion matrix, the singular value decomposition of which gives access to an optimized focusing law at any point. We show that, by decoupling the aberrations undergone by the outgoing and incoming waves and applying an iterative strategy, compensation for even high-order and spatially-distributed aberrations can be achieved. After a numerical validation of the process, ultrasound matrix imaging (UMI) is applied to the in-vivo imaging of a gallbladder. A map of isoplanatic modes is retrieved and is shown to be strongly correlated with the arrangement of tissues constituting the medium. The corresponding focusing laws yield an ultrasound image with drastically improved contrast and transverse resolution. UMI thus provides a flexible and powerful route towards computational ultrasound.


Asunto(s)
Acústica , Transductores , Ultrasonografía/métodos , Fantasmas de Imagen
6.
Artículo en Inglés | MEDLINE | ID: mdl-35507610

RESUMEN

Reflection ultrasound computed tomography (RUCT) attains optimal image quality from objects that can be fully accessed from multiple directions, such as the human breast or small animals. Owing to the full-view tomography approach based on the compounding of images taken from multiple angles, RUCT effectively mitigates several deficiencies afflicting conventional pulse-echo ultrasound (US) systems, such as speckle patterns and interuser variability. On the other hand, the small interelement pitch required to fulfill the spatial sampling criterion in the circular transducer configuration used in RUCT typically implies the use of an excessive number of independent array elements. This increases the system's complexity and costs, and limits the achievable imaging speed. Here, we explore acquisition schemes that enable RUCT imaging with the reduced number of transmit/receive elements. We investigated the influence of the element size in transmission and reception in a ring array geometry. The performance of a sparse acquisition approach based on partial acquisition from a subset of the elements has been further assessed. A larger element size is shown to preserve contrast and resolution at the center of the field of view (FOV), while a reduced number of elements is shown to cause uniform loss of contrast and resolution across the entire FOV. The tradeoffs of achievable FOV, contrast-to-noise ratio, and temporal and spatial resolutions are assessed in phantoms and in vivo mouse experiments. The experimental analysis is expected to aid the development of optimized hardware and image acquisition strategies for RUCT and, thus, result in more affordable imaging systems facilitating wider adoption.


Asunto(s)
Tomografía Computarizada por Rayos X , Transductores , Animales , Humanos , Ratones , Fantasmas de Imagen , Tomografía , Ultrasonografía/métodos
7.
IEEE Trans Med Imaging ; 41(4): 846-856, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34735340

RESUMEN

Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 µm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.


Asunto(s)
Microburbujas , Tomografía , Animales , Medios de Contraste , Imagenología Tridimensional , Ratones , Fantasmas de Imagen , Ultrasonografía/métodos
8.
Sci Adv ; 7(50): eabi5464, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34878843

RESUMEN

Understanding the physiological impact of transcranial ultrasound in rodent brains may offer an important preclinical model for human scale magnetic resonance­guided focused ultrasound methods. However, precision tools for high-resolution transcranial ultrasound targeting and real-time in vivo tracking of its effects at the mouse brain scale are currently lacking. We report a versatile bidirectional hybrid fluorescence-ultrasound (FLUS) system incorporating a 0.35-mm precision spherical-phased array ultrasound emission with a fiberscope-based wide-field fluorescence imaging. We show how the marriage between cortex-wide functional imaging and targeted ultrasound delivery can be used to transcranially map previously undocumented localized fluorescence events caused by reversible thermal processes and perform high-speed large-scale recording of neural activity induced by focused ultrasound. FLUS thus naturally harnesses the extensive toolbox of fluorescent tags and ultrasound's localized bioeffects toward visualizing and causally perturbing a plethora of normal and pathophysiological processes in the living murine brain.

9.
Neuroimage ; 237: 118111, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940140

RESUMEN

Intense efforts are underway to develop functional imaging modalities for capturing brain activity at the whole organ scale with high spatial and temporal resolution. Functional optoacoustic (fOA) imaging is emerging as a new tool to monitor multiple hemodynamic parameters across the mouse brain, but its sound validation against other neuroimaging modalities is often lacking. Here we investigate mouse brain responses to peripheral sensory stimulation using both fOA and functional ultrasound (fUS) imaging. The two modalities operate under similar spatio-temporal resolution regime, with a potential to provide synergistic and complementary hemodynamic readouts. Specific contralateral activation was observed with sub-millimeter spatial resolution with both methods. Sensitivity to hemodynamic activity was found to be on comparable levels, with the strongest responses obtained in the oxygenated hemoglobin channel of fOA. While the techniques attained highly correlated hemodynamic responses, the differential fOA readings of oxygenated and deoxygenated haemoglobin provided complementary information to the blood flow contrast of fUS. The multi-modal approach may thus emerge as a powerful tool providing new insights into brain function, complementing our current knowledge generated with well-established neuroimaging methods.


Asunto(s)
Neuroimagen Funcional/métodos , Acoplamiento Neurovascular , Técnicas Fotoacústicas/métodos , Corteza Somatosensorial/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Conducta Animal/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Acoplamiento Neurovascular/fisiología , Estimulación Física
10.
Nat Biomed Eng ; 5(3): 219-228, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33723412

RESUMEN

Changes in cerebral blood flow are associated with stroke, aneurysms, vascular cognitive impairment, neurodegenerative diseases and other pathologies. Brain angiograms, typically performed via computed tomography or magnetic resonance imaging, are limited to millimetre-scale resolution and are insensitive to blood-flow dynamics. Here we show that ultrafast ultrasound localization microscopy of intravenously injected microbubbles enables transcranial imaging of deep vasculature in the adult human brain at microscopic resolution and the quantification of haemodynamic parameters. Adaptive speckle tracking to correct for micrometric brain-motion artefacts and ultrasonic-wave aberrations induced during transcranial propagation allowed us to map the vascular network of tangled arteries to functionally characterize blood-flow dynamics at a resolution of up to 25 µm and to detect blood vortices in a small deep-seated aneurysm in a patient. Ultrafast ultrasound localization microscopy may facilitate the understanding of brain haemodynamics and of how vascular abnormalities in the brain are related to neurological pathologies.


Asunto(s)
Arterias/patología , Encéfalo/patología , Circulación Cerebrovascular/fisiología , Microscopía/métodos , Ultrasonografía/métodos , Humanos , Microburbujas , Movimiento (Física)
11.
Artículo en Inglés | MEDLINE | ID: mdl-32406833

RESUMEN

Ultrasound can be delivered transcranially to ablate brain tissue, open the blood-brain barrier, or affect neural activity. Transcranial focused ultrasound in small rodents is typically done with low-frequency single-element transducers, which results in unspecific targeting and impedes the concurrent use of fast neuroimaging methods. In this article, we devised a wide-angle spherical array bidirectional interface for high-resolution parallelized optoacoustic imaging and transcranial ultrasound (POTUS) delivery in the same target regions. The system operates between 3 and 9 MHz, allowing to generate and steer focal spots with widths down to [Formula: see text] across a field of view covering the entire mouse brain, while the same array is used to capture high-resolution 3-D optoacoustic data in real time. We showcase the system's versatile beam-forming capacities as well as volumetric optoacoustic imaging capabilities and discuss its potential to noninvasively monitor brain activity and various effects of ultrasound emission.


Asunto(s)
Encéfalo , Roedores , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Ratones , Transductores , Ultrasonografía
12.
Opt Lett ; 45(13): 3470-3473, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630874

RESUMEN

Imaging of cerebral vasculature is impeded with the existing fluorescence microscopy methods due to intense light scattering in living tissues and the need for highly invasive craniotomy procedures to resolve structures on a capillary scale. We propose a widefield fluorescence localization microscopy technique for high-resolution transcranial imaging and quantitative assessment of cortical perfusion in mice. The method is based on tracking single fluorescent microparticles sparsely distributed in the blood stream using a simple CMOS camera and a continuous-wave laser source. We demonstrate quantitative transcranial in vivo mapping of the blood flow velocity and direction at capillary level resolution (5 µm) across the entire cortex. The new technique opens a new high-resolution transcranial window into the brain function in health and disease.


Asunto(s)
Capilares/diagnóstico por imagen , Capilares/fisiología , Circulación Cerebrovascular , Microscopía Fluorescente/métodos , Relación Señal-Ruido , Cráneo , Animales , Ratones
13.
JACC Basic Transl Sci ; 2(4): 372-383, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29367953

RESUMEN

BACKGROUND: The majority of prosthetic heart valves currently implanted are tissue valves that can be expected to calcify with time and eventually fail. Surgical or percutaneous redux valve replacement is associated with higher rate of complications. We propose a novel non-invasive therapeutic approach based on the use of pulsed cavitational ultrasound (PCU) to improve the valvular function of degenerative calcified bioprosthesis. OBJECTIVES: Our study aims to demonstrate in vitro and in vivo on an ovine model that PCU can significantly improve the bioprosthesis opening by softening remotely the calcified stiff cusps. METHODS: All the experiments were performed on calcified bioprosthetic valves explanted from human patients. PCU was performed in vitro on calcified bioprosthesis mounted on a hydraulic bench with pulsatile flow (n=8) and in vivo on an ovine model with implanted calcified bioprosthesis (n=7). We used 3D echocardiography, pressure and flow sensors, quantitative stiffness evaluation using shear wave elastography, micro-CT imaging and histology to evaluate in vitro and in vivo the effect of PCU. RESULTS: The transvalvular gradient was found to decrease by a mean of 50% after PCU in both in vitro (from 21.1±3.9 to 9.6±1.7 mmHg, p<0.001) and in vivo setup (from 16.2±3.2 to 8.2±1.3 mmHg, p<0.001), with a decrease of valve stiffness (in vitro: from 105.8±9 to 46.6±4 kPa, p<0.001; in vivo: from 82.6±10 to 41.7±7 kPa, p<0.001) and an increase of valve area (from 1.10±0.1 to 1.58±0.1 cm2, p<0.001). Histology and micro-CT imaging showed modifications of calcification structure without loss of calcification volume or alteration of the leaflet superficial structures. CONCLUSIONS: We have demonstrated in vitro and in vivo that PCU can decrease a calcified bioprosthesis stenosis by softening the leaflets remotely. This new non-invasive approach has the potential to improve the outcome of patients with severe bioprosthesis stenosis.

14.
Eur Heart J Cardiovasc Imaging ; 17(10): 1101-7, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27522080

RESUMEN

AIMS: Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. METHODS AND RESULTS: Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. CONCLUSIONS: Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will open the door in the near future to the non-invasive treatment of functional IMR.


Asunto(s)
Ecocardiografía Tridimensional/métodos , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía , Procedimientos Quirúrgicos Ultrasónicos/métodos , Animales , Cuerdas Tendinosas/diagnóstico por imagen , Cuerdas Tendinosas/cirugía , Modelos Animales de Enfermedad , Técnicas In Vitro , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Sensibilidad y Especificidad , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...